Fractal dimension of irregular digitalized curves by divider method

被引:5
|
作者
Uthayakumar, R. [1 ]
Paramanathan, P. [1 ]
机构
[1] Gandhigram Rural Univ, Dept Math, Gandhigram 624302, Tamil Nadu, India
关键词
fractal dimension; divider method; digital curves;
D O I
10.1016/j.amc.2006.11.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. This method suffers from a number of problems. The major problem is choosing initial and final step length of dividers. In this short paper we would like to demonstrate that the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 71
页数:4
相关论文
共 50 条
  • [31] Fractal dimension and thermodynamic fluctuation properties of IDV light curves
    Leung, Chun-Sing
    Wei, Jian-Yan
    Kovacs, Zoltan
    Harko, Tiberiu
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2011, 11 (09) : 1031 - 1045
  • [32] THE METHOD OF CALCULATING FRACTAL DIMENSION - REPLY
    CROSS, SS
    HOWAT, AJ
    STEPHENSON, TJ
    COTTON, DWK
    UNDERWOOD, JCE
    [J]. JOURNAL OF PATHOLOGY, 1995, 175 (04): : 462 - 462
  • [33] Roughness Method to Estimate Fractal Dimension
    Blachowski, A.
    Ruebenbauer, K.
    [J]. ACTA PHYSICA POLONICA A, 2009, 115 (03) : 636 - 640
  • [34] A PRACTICAL METHOD FOR ESTIMATING FRACTAL DIMENSION
    JIN, XC
    ONG, SH
    JAYASOORIAH
    [J]. PATTERN RECOGNITION LETTERS, 1995, 16 (05) : 457 - 464
  • [35] New interpolation method with fractal curves
    Cader, Andrzej
    Krupski, Marcin
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1071 - 1081
  • [36] Direct estimation of fractal dimension for an irregular surface using the roughness parameter approach
    Raj, S. Pruthvi
    Prashanth, M. H.
    [J]. MEASUREMENT, 2024, 236
  • [37] Fractal Dimension of Time-Activity Curves in Dynamic Parathyroid Scintigraphy
    Jankovic, Milica M.
    Paskas, Milorad P.
    Markovic, Ana Koljevic
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 480 - 483
  • [38] Fractal dimension of well logging curves associated with the texture of volcanic rocks
    Mou, Dan
    Wang, Zhu-Wen
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 : 278 - 281
  • [39] THE IMPORTANCE OF PROPER SEQUENCING IN ESTIMATING THE LENGTH AND FRACTAL DIMENSION OF TORTUOUS CURVES
    Imre, Attila R.
    Bidder, Owen R.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [40] THERMODYNAMIC METHOD FOR CALCULATING SURFACE FRACTAL DIMENSION
    NEIMARK, AV
    [J]. JETP LETTERS, 1990, 51 (10) : 607 - 610