Kinetic Lattice Monte Carlo Simulations of Vacancy Diffusion in Silicon Below the Melting Point

被引:2
|
作者
Kang, Jeong-Won [1 ]
Kwon, Oh Kuen [2 ]
Lee, Sangkil [3 ,6 ]
Lee, Sang Hun [4 ,5 ]
Kim, Do Hyun [5 ]
Hwang, Ho-Jung
机构
[1] Chungju Natl Univ, Dept Comp Engn, Chungju 380702, South Korea
[2] Semyung Univ, Dept Elect Engn, Jecheon 390711, South Korea
[3] Inje Univ, Dept Pharmaceut Engn, Gyungnam 621749, South Korea
[4] LG Siltron, Simulat Part, Gumi 730724, Gyeongbuk, South Korea
[5] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
[6] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 156756, South Korea
关键词
Silicon; Kinetic Monte Carlo; Point Defects; Vacancy Diffusion; SELF-DIFFUSION; DEFECTS; AGGREGATION; GERMANIUM;
D O I
10.1166/jctn.2010.1401
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated vacancy diffusion in silicon via kinetic lattice Monte Carlo simulations of temperatures below the melting point. Equilibrium diffusivities in the cluster region were two orders of magnitude lower than those of free vacancies, which were calculated from a known low density system. While the mean cluster size was almost constant at temperatures below 1,200 K, it increased at temperatures from 1,300 K to 1,400 K and then decreased after the peak temperature of 1,400 K was reached. The number of clusters slightly increased at temperatures from 800 K to 1,200 K whereas it abruptly decreased at temperatures above 1,300 K. While high temperatures resulted in fewer large vacancy clusters, many small clusters at low temperatures resulted in fewer free vacancies in intermediate phases between aggregation and dissociation of smaller clusters. Effective migration energies of a silicon vacancy below the melting point were 2.5 eV and 0.47 eV at temperatures above and below 1,300 K, respectively.
引用
收藏
页码:604 / 611
页数:8
相关论文
共 50 条
  • [1] Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations
    Haley, Benjamin P.
    Beardmore, Keith M.
    Gronbech-Jensen, Niels
    PHYSICAL REVIEW B, 2006, 74 (04)
  • [2] Vacancy clustering and diffusion in germanium using kinetic lattice Monte Carlo simulations
    Kang, J. W.
    Choi, Y. G.
    Lee, J. H.
    Lee, S. H.
    Oh, H. J.
    MOLECULAR SIMULATION, 2009, 35 (03) : 234 - 240
  • [3] Vacancy Characteristics During Silicon Crystal Cooling via Kinetic Lattice Monte Carlo Simulations
    Choi, Young Gyu
    Kwon, Oh Kuen
    Hwang, Ho-Jung
    Kang, Jeong-Won
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (11) : 2417 - 2422
  • [4] Kinetic lattice Monte Carlo simulation study on vacancy diffusion in germanium
    Kang, Jeong Won
    Kwon, Oh Kuen
    Choi, Young Gyu
    CURRENT APPLIED PHYSICS, 2009, 9 (02) : E25 - E28
  • [5] Kinetic Lattice Monte Carlo Simulations of Ad-Dimer Diffusion on the Silicon (100) Surface
    Akis, R.
    Ferry, D. K.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 497 - 500
  • [6] Kinetic Lattice Monte Carlo Simulations of Ad-Dimer Diffusion on the Silicon (100) Surface
    R. Akis
    D.K. Ferry
    Journal of Computational Electronics, 2003, 2 : 497 - 500
  • [7] Kinetic lattice Monte Carlo simulations of processes on the silicon (100) surface
    Akis, R
    Ferry, DK
    Musgrave, CB
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 19 (1-2): : 183 - 187
  • [8] Kinetic Monte Carlo simulations of vacancy evolution in graphene
    Parisi, L.
    Di Giugno, R.
    Deretzis, I.
    Angilella, G. G. N.
    La Magna, A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 42 : 179 - 182
  • [9] Kinetic lattice Monte Carlo simulations of interdiffusion in strained silicon germanium alloys
    Chen, Renyu
    Dunham, Scott T.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (01): : C1G18 - C1G23
  • [10] Kinetic lattice Monte Carlo simulations of silicon and germanium epitaxial growth on the silicon (100) surface
    Akis, R
    Ferry, DK
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (03) : 345 - 348