A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space

被引:17
|
作者
Kocakusakli, Erdem [1 ]
Tuncer, O. Ogulcan [1 ]
Gok, Ismail [1 ]
Yayli, Yusuf [1 ]
机构
[1] Ankara Univ, Dept Math, Fac Sci, Ankara, Turkey
关键词
Canal surface; Minkowski space; Spherical indicatrix of space curve; Split quaternion; Tubular surface; EUCLIDEAN-SPACE E-2(4); TUBULAR SURFACES; CURVES; ROTATIONS; HELICES;
D O I
10.1007/s00006-016-0723-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce canal surfaces determined by spherical indicatrices of any spatial curve in Minkowski 3-space by means of timelike split quaternions. Moreover, using orthogonal matrices corresponding to these quaternions, the canal surfaces are obtained as homotetic motions. Then, we investigate a relationship between the canal surfaces and unit split quaternions. Finally, we present some interesting examples with figures.
引用
收藏
页码:1387 / 1409
页数:23
相关论文
共 50 条
  • [41] Entire surfaces of constant curvature in Minkowski 3-space
    Bonsante, Francesco
    Seppi, Andrea
    Smillie, Peter
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1261 - 1309
  • [42] Structure and characterization of ruled surfaces in Minkowski 3-space
    Guler, Fatma
    Kasap, Emin
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2016, 14 (02) : 155 - 164
  • [43] On bi-conservative surfaces in Minkowski 3-space
    Fu, Yu
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 66 : 71 - 79
  • [44] RULED SURFACES IN LORENTZ-MINKOWSKI 3-SPACE
    Manhart, Friedrich
    INTERNATIONAL WORKSHOP ON LINE GEOMETRY & KINEMATICS, IW - LGK - 11, 2011, : 63 - 70
  • [45] Spacelike Sweeping Surfaces and Singularities in Minkowski 3-Space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [46] ON THE SECOND KIND TWISTED SURFACES IN MINKOWSKI 3-SPACE
    Grbovic, Milica
    Nesovic, Emilija
    Pantic, Anica
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 9 - 20
  • [47] BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE
    Xu, Chuanyou
    Cao, Xifang
    Zhu, Peng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 377 - 394
  • [48] A study on timelike circular surfaces in Minkowski 3-space
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    Ali, Akram
    Mofarreh, Fatemah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)
  • [49] On the Gauss map of translation surfaces in Minkowski 3-space
    Yoon, DW
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (03): : 389 - 398
  • [50] Umbilics of Surfaces in the Lorentz-Minkowski 3-Space
    Ando, Naoya
    Umehara, Masaaki
    RESULTS IN MATHEMATICS, 2023, 78 (06)