A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space

被引:17
|
作者
Kocakusakli, Erdem [1 ]
Tuncer, O. Ogulcan [1 ]
Gok, Ismail [1 ]
Yayli, Yusuf [1 ]
机构
[1] Ankara Univ, Dept Math, Fac Sci, Ankara, Turkey
关键词
Canal surface; Minkowski space; Spherical indicatrix of space curve; Split quaternion; Tubular surface; EUCLIDEAN-SPACE E-2(4); TUBULAR SURFACES; CURVES; ROTATIONS; HELICES;
D O I
10.1007/s00006-016-0723-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce canal surfaces determined by spherical indicatrices of any spatial curve in Minkowski 3-space by means of timelike split quaternions. Moreover, using orthogonal matrices corresponding to these quaternions, the canal surfaces are obtained as homotetic motions. Then, we investigate a relationship between the canal surfaces and unit split quaternions. Finally, we present some interesting examples with figures.
引用
收藏
页码:1387 / 1409
页数:23
相关论文
共 50 条
  • [1] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Erdem Kocakuşaklı
    O. Oğulcan Tuncer
    İsmail Gök
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2017, 27 : 1387 - 1409
  • [2] New Types of Canal Surfaces in Minkowski 3-Space
    Ucum, Ali
    Ilarslan, Kazim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 449 - 468
  • [3] New Types of Canal Surfaces in Minkowski 3-Space
    Ali Uçum
    Kazım İlarslan
    Advances in Applied Clifford Algebras, 2016, 26 : 449 - 468
  • [4] Split quaternions and the bisector surfaces obtained by two spatial curves in Minkowski 3-space
    Sariaydin, Muhammed T.
    Korpinar, Talat
    Asil, Vedat
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2018, 6 (03) : 205 - 211
  • [5] Dual split quaternions and screw motion in Minkowski 3-space
    Kula, L.
    Yayli, Y.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A3): : 245 - 258
  • [6] Space-like Loxodromes on the Canal Surfaces in Minkowski 3-Space
    Sonmez, Nilgun
    Babaarslan, Murat
    FILOMAT, 2018, 32 (14) : 4821 - 4839
  • [7] Geometric Characterizations of Canal Surfaces in Minkowski 3-Space II
    Qian, Jinhua
    Su, Mengfei
    Fu, Xueshan
    Jung, Seoung Dal
    MATHEMATICS, 2019, 7 (08)
  • [8] GEOMETRIC CHARACTERIZATIONS OF CANAL SURFACES IN MINKOWSKI 3-SPACE I
    Fu, Xueshan
    Jung, Seoung Dal
    Qian, Jinhua
    Su, Mengfei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 867 - 883
  • [9] Classifications of Canal Surfaces with the Gauss Maps in Minkowski 3-Space
    Qian, Jinhua
    Tian, Xueqian
    Fu, Xueshan
    Kim, Young Ho
    MATHEMATICS, 2020, 8 (09)
  • [10] Ruled Surfaces in Minkowski 3-space and Split Quaternion Operators
    Aslan, Selahattin
    Bekar, Murat
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)