Some model theory and topological dynamics of p-adic algebraic groups

被引:6
|
作者
Penazzi, Davide [1 ]
Pillay, Anand [2 ]
Yao, Ningyuan [3 ]
机构
[1] Univ Cent Lancashire, Sch Phys Sci & Comp, Preston PR1 2HE, Lancs, England
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[3] Fudan Univ, Sch Philosophy, 220 Handan Rd, Yangpu Qu 200433, Shanghai Shi, Peoples R China
关键词
model theory; topological dynamics; p-adics; Ellis group; DEFINABLE GROUPS;
D O I
10.4064/fm707-3-2019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate the study of p-adic algebraic groups G from the stability-theoretic and definable topological-dynamical points of view, that is, we consider invariants of the action of G on its space of types over Q(p) in the language of fields. We consider the additive and multiplicative groups of Q(p), and Z(p), the group of upper triangular invertible 2 x 2 matrices, SL(2, Z(p)), and our main focus, SL(2, Q(p)). In all cases we identify f-generic types (when they exist), minimal subflows, and idempotents. Among the main results is that the "Ellis group" of SL(2, Q(p)) is (Z) over cap x Z(p)*, yielding a counterexample to Newelski's conjecture with new features: G = G(00)= G(000) but the Ellis group is infinite. A final section deals with the action of SL(2, Q(p)) on the type space of the projective line over Q(p).
引用
收藏
页码:191 / 216
页数:26
相关论文
共 50 条
  • [41] ALGEBRAIC INDEPENDENCE OF P-ADIC NUMBERS
    BUNDSCHUH, P
    WALLISSER, R
    MATHEMATISCHE ANNALEN, 1976, 221 (03) : 243 - 249
  • [42] On p-adic Expansions of Algebraic Integers
    Chen, Hsing-Hau
    Huang, Ming-Deh
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 109 - 116
  • [43] P-ADIC CURVATURE AND COHOMOLOGY OF DISCRETE SUBGROUPS OF P-ADIC GROUPS
    GARLAND, H
    ANNALS OF MATHEMATICS, 1973, 97 (03) : 375 - 423
  • [44] p-Adic Schrodinger representations of the higher p-adic Heisenberg groups
    Diarra, Bertin
    Mounkoro, Tongobe
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (01) : 91 - 129
  • [45] p-Adic Hurwitz groups
    Dzambic, Amir
    Jones, Gareth A.
    JOURNAL OF ALGEBRA, 2013, 379 : 179 - 207
  • [46] Nonlinear Dynamics Equation in p-Adic String Theory
    V. S. Vladimirov
    Ya. I. Volovich
    Theoretical and Mathematical Physics, 2004, 138 : 297 - 309
  • [47] Real and p-adic Lie algebra functors on the category of topological groups
    Glöckner, H
    PACIFIC JOURNAL OF MATHEMATICS, 2002, 203 (02) : 321 - 368
  • [48] p-adic Lie groups
    Hunacek, Mark
    MATHEMATICAL GAZETTE, 2014, 98 (541): : 165 - 166
  • [49] Nonlinear dynamics equation in p-adic string theory
    Vladimirov, VS
    Volovich, YI
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (03) : 297 - 309
  • [50] On p-adic limits of topological invariants
    Kionke, Steffen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (02): : 498 - 534