A soft robot structure with limbless resonant, stick and slip locomotion

被引:25
|
作者
Calabrese, Luigi [1 ,2 ]
Berardo, Alice [1 ]
De Rossi, Danilo [2 ,3 ]
Gei, Massimiliano [4 ]
Pugno, Nicola Maria [1 ,5 ,6 ]
Fantoni, Gualtiero [7 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired & Graphene Nanomech, Via Mesiano 77, I-38123 Trento, Italy
[2] Univ Pisa, Res Ctr E Piaggio, Largo L Lazzarino 2, I-56122 Pisa, Italy
[3] Univ Pisa, Dept Informat Engn, Via G Caruso 16, I-56122 Pisa, Italy
[4] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
[5] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[6] Edoardo Amaldi Fdn, Ket Lab, Via Politecn Snc, I-00133 Rome, Italy
[7] Univ Pisa, Dept Civil & Ind Engn, Largo L Lazzarino 2, I-56122 Pisa, Italy
关键词
actuator; dielectric elastomer; electroactive polymer; frictional anisotropy; resonator; soft robotics; FREQUENCY;
D O I
10.1088/1361-665X/ab3de1
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a smart robot structure that exploits anisotropic friction to achieve stick-slip locomotion. The robot is made out of three components: a plastic beam, a planar dielectric elastomer actuator and four bristle pads with asymmetric rigid metallic bristles. We show that when the robot is electronically activated at increasing frequency, its structure exploits the resonance condition to reach the maximum locomotion speed. The fundamental frequency of the structure is estimated both analytically and numerically, allowing the range of frequencies in which the top locomotion speed was observed during the experiments to be identified. The locomotion speed of the robot as a function of the actuation frequency is estimated with a frequency response analysis performed on a discretised model of the structure, revealing good agreement with the experimental evidence.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Design and locomotion analysis of modular soft robot
    Liu, Zhaoyu
    Wang, Yuxuan
    Wang, Jiangbei
    Fei, Yanqiong
    ROBOTICA, 2022, 40 (11) : 3995 - 4010
  • [22] Bioinspired Setae for Soft Worm Robot Locomotion
    Manwell, Thomas
    Guo, Binjie
    Back, Junghwan
    Liu, Hongbin
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), 2018, : 54 - 59
  • [23] Metamaterial soft snake robot for rectilinear locomotion
    Parvaresh, Aida
    Seyidoglu, Burcu
    Rafsanjani, Ahmad
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFT ROBOTICS, ROBOSOFT, 2024, : 519 - 524
  • [24] Dislocation Structure and Stick-Slip Phenomenon
    Perfilyev, V.
    Moshkovich, A.
    Lapsker, I.
    Laikhtman, A.
    Rapoport, L.
    TRIBOLOGY LETTERS, 2014, 55 (02) : 295 - 301
  • [25] Dynamic simulation of a parallel robot: Coulomb friction and stick-slip in robot joints
    Farhat, Nidal
    Mata, Vicente
    Page, Alvaro
    Diaz-Rodriguez, Miguel
    ROBOTICA, 2010, 28 : 35 - 45
  • [26] Design and Locomotion Study of Stick-Slip Piezoelectric Actuator Using Two-Stage Flexible Hinge Structure
    Li, Zheng
    Su, Zhirong
    Zhao, Liang
    Han, Haitao
    Guo, Zhanyu
    Zhao, Yuyang
    Sun, Hexu
    MICROMACHINES, 2021, 12 (02) : 1 - 13
  • [27] A kinematic model to constrain slip in soft body peristaltic locomotion
    Kandhari, Akhil
    Daltorio, Kathryn A.
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), 2018, : 309 - 314
  • [28] Cubic centimeter robot based on inertial stick-slip driving
    Zhong, Bowen
    Liu, Bin
    Jin, Ziqi
    Wang, Zhenhua
    Sun, Lining
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (02): : 437 - 445
  • [29] Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective
    Du, Zhouwei
    Fang, Hongbin
    Zhan, Xiong
    Xu, Jian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 105 : 261 - 275
  • [30] Analysis of dynamic bipedal robot walking with stick-slip transitions
    Gamus, Benny
    Or, Yizhar
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3348 - 3355