Land surface-atmosphere interaction in future South American climate using a multi-model ensemble

被引:29
|
作者
Ruscica, R. C. [1 ]
Menendez, C. G. [1 ,2 ]
Soerensson, A. A. [1 ]
机构
[1] Univ Buenos Aires, Ctr Invest Mar & Atmosfera, Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Int Guiraldes 2160,Pabellon 2,Piso 2, RA-1053 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEN, Dept Ciencias Atmosfera & Oceanos, RA-1053 Buenos Aires, DF, Argentina
来源
ATMOSPHERIC SCIENCE LETTERS | 2016年 / 17卷 / 02期
关键词
land-atmosphere interaction; soil moisture; precipitation; coupling; South America; regional climate modeling; SOIL-MOISTURE; PRECIPITATION; MODEL; SENSITIVITY; FEEDBACK; WATER; SIMULATION; RESOLUTION; STRENGTH;
D O I
10.1002/asl.635
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The land-atmosphere interaction for reference and future climate is estimated with a regional climate model ensemble. In reference climate, more than 50% of the models show interaction in southeastern South America during austral spring, summer and autumn. In future climate, the region remains a strong hotspot although somewhat weakened due to the wet response that enhance energy limitation on the evapotranspiration. The region of the Brazilian Highlands and Matto Grosso appears as a new extensive hotspot during austral spring. This is related to a dry response which is probably accentuated by land surface feedbacks.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [41] Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble
    Jie Zhang
    Tongwen Wu
    Laurent Li
    Kalli Furtado
    Xiaoge Xin
    Chengjun Xie
    Mengzhe Zheng
    He Zhao
    Yumeng Zhou
    npj Climate and Atmospheric Science, 6
  • [42] Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble
    Zhang, Jie
    Wu, Tongwen
    Li, Laurent
    Furtado, Kalli
    Xin, Xiaoge
    Xie, Chengjun
    Zheng, Mengzhe
    Zhao, He
    Zhou, Yumeng
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2023, 6 (01)
  • [43] Hydrological ensemble forecasting using a multi-model framework
    Dion, Patrice
    Martel, Jean-Luc
    Arsenault, Richard
    JOURNAL OF HYDROLOGY, 2021, 600 (600)
  • [44] Climate change projections of medicanes with a large multi-model ensemble of regional climate models
    Romera, Raquel
    Angel Gaertner, Miguel
    Sanchez, Enrique
    Dominguez, Marta
    Jesus Gonzalez-Aleman, Juan
    Miglietta, Mario Marcello
    GLOBAL AND PLANETARY CHANGE, 2017, 151 : 134 - 143
  • [45] Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-model ensemble and SWAT model
    Sun, Shanlei
    Chen, Haishan
    Ju, Weimin
    Hua, Wenjian
    Yu, Miao
    Yin, Yixing
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (09) : 2972 - 2987
  • [46] Global crop yield forecasting using seasonal climate information from a multi-model ensemble
    Iizumi, Toshichika
    Shin, Yonghee
    Kim, Wonsik
    Kim, Moosup
    Choi, Jaewon
    CLIMATE SERVICES, 2018, 11 : 13 - 23
  • [47] Southeastern US Rainfall Prediction in the North American Multi-Model Ensemble
    Infanti, Johnna M.
    Kirtman, Ben P.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (02) : 529 - 550
  • [48] Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling
    Trigo, I. F.
    Boussetta, S.
    Viterbo, P.
    Balsamo, G.
    Beljaars, A.
    Sandu, I.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (23) : 12,096 - 12,111
  • [49] Predictive skill of North American Multi-Model Ensemble seasonal forecasts for the climate rainfall over Central Africa
    Tchinda, Armand Feudjio
    Tanessong, Romeo Steve
    Mamadou, Ossenatou
    Diffo, Vanessa Tchida
    Yepdo, Zephirin Djomou
    Orou, Jean Bio Chabi
    METEOROLOGICAL APPLICATIONS, 2022, 29 (03)
  • [50] CMIP5 multi-model ensemble-based future climate projection for the Odisha state of India
    Vijayakumar, S.
    Ramaraj, A. P.
    CURRENT SCIENCE, 2024, 127 (11): : 1352 - 1356