An extension of Harrington's noncupping theorem

被引:1
|
作者
Yu, L [1 ]
Ding, DC [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
关键词
anti-cupping property; noncuppable; high T-degrees; computably enumerable set;
D O I
10.1360/03yf9017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
(1) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w not greater than or equal to x implies a U w not greater than or equal to b U x. (ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping relative to x for each c.e. degree x. By a tree method, we prove that every high c.e. degree has e.a.c. property by extending Harrington's anti-cupping theorem.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 50 条
  • [21] An extension of Vizing's theorem
    Chew, KH
    JOURNAL OF GRAPH THEORY, 1997, 24 (04) : 347 - 355
  • [22] An extension of Wick's theorem
    Vignat, C.
    Bhatnagar, S.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2404 - 2407
  • [23] An extension of Aigner’s theorem
    Nguyen Xuan Tho
    Monatshefte für Mathematik, 2024, 204 : 191 - 195
  • [24] An Extension of Sobolev's Theorem
    王小群
    Tsinghua Science and Technology, 2000, (02) : 140 - 144
  • [25] An extension of Kronecker's theorem
    Bacon, HM
    ANNALS OF MATHEMATICS, 1934, 35 : 776 - 786
  • [26] An extension of Jellett's theorem
    Barros, A.
    Sousa, P.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (02): : 190 - 197
  • [27] On an extension of Bochner's theorem
    Coulibaly, Pie
    Kangni, Kinvi
    AFRIKA MATEMATIKA, 2014, 25 (02) : 411 - 416
  • [28] AN EXTENSION OF CAMBERN'S THEOREM
    Botelho, Fernanda
    Jamison, James
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (03): : 181 - 188
  • [29] AN EXTENSION OF FRANKLIN'S THEOREM
    Borodin, O., V
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1516 - 1521
  • [30] An Extension of Hall's Theorem
    Iosef Pinelis
    Annals of Combinatorics, 2002, 6 (1) : 103 - 106