Transient distribution of the length of GI/G/N queueing systems

被引:10
|
作者
Hou, ZT
Yuan, CG
Zou, JZ
Liu, ZM
Luo, JW
Liu, GX
Shi, P
机构
[1] Cent S Univ, Sch Math, Changsha 410075, Hunan, Peoples R China
[2] Def Sci & Technol Org, Land Operat Div, Edinburgh, SA, Australia
关键词
Markov skeleton process (MSP); queueing system; (H; Q)-pair; backward equation;
D O I
10.1081/SAP-120020427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present the backward equations of Markov skeleton processes, which are then applied to GI/G/N queueing systems. Transient distribution of the length of GI/G/N queueing system is obtained.
引用
收藏
页码:567 / 592
页数:26
相关论文
共 50 条
  • [21] Two new heuristics for the GI/G/n/0 queueing loss system with examples based on the two-phase Coxian distribution
    Atkinson, J. B.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (06) : 818 - 830
  • [22] EXTREME VALUE DISTRIBUTION FOR M/G/1 AND G/M/1 QUEUEING SYSTEMS
    COHEN, JW
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1968, 4 (01): : 83 - &
  • [23] SUBGEOMETRIC RATES OF CONVERGENCE OF THE GI/G/1 QUEUEING SYSTEM
    Li Xiaohua
    Hou Zhenting
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (05) : 1983 - 1996
  • [24] SUBGEOMETRIC RATES OF CONVERGENCE OF THE GI/G/1 QUEUEING SYSTEM
    李晓花
    侯振挺
    ActaMathematicaScientia, 2012, 32 (05) : 1983 - 1996
  • [25] Queue length distribution of M/G/1 queueing system with min(N, V)-policy based on multiple server vacations
    Tang, Ying-Hui
    Wu, Wen-Qing
    Liu, Yun-Po
    Liu, Xiao-Yun
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2014, 34 (06): : 1533 - 1546
  • [26] Packet loss characteristics for M/G/1/N queueing systems
    Dieter Fiems
    Stijn De Vuyst
    Sabine Wittevrongel
    Herwig Bruneel
    Annals of Operations Research, 2009, 170
  • [27] Packet loss characteristics for M/G/1/N queueing systems
    Fiems, Dieter
    De Vuyst, Stijn
    Wittevrongel, Sabine
    Bruneel, Herwig
    ANNALS OF OPERATIONS RESEARCH, 2009, 170 (01) : 113 - 131
  • [28] Proposal of Approximation Analysis Method for GI/G/1 Queueing System
    Kong, Fangfang
    Nakase, Ippei
    Arizono, Ikuo
    Takemoto, Yasuhiko
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2008, 7 (02): : 143 - 149
  • [29] Analysis of the N-policy GI/M/1/K Queueing Systems with Working Breakdowns and Repairs
    Yang, Dong-Yuh
    Cho, Yi-Chun
    COMPUTER JOURNAL, 2019, 62 (01): : 130 - 143
  • [30] Rate of convergence to ergodic distribution for queue length in systems of the type M θ/G/1/N
    Bratiichuk A.M.
    Ukrainian Mathematical Journal, 2007, 59 (9) : 1300 - 1312