Beyond Word Embeddings: Temporal Representations of Words using Google Trends

被引:0
|
作者
Haque, Md Enamul [1 ]
Maiti, Aniruddha [2 ]
Tozal, Mehmet Engin [3 ]
机构
[1] Stanford Univ, Spencer Ctr Vis Res, Palo Alto, CA 94303 USA
[2] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19140 USA
[3] Univ Louisiana Lafayette, Sch Comp & Informat, Lafayette, LA 70504 USA
关键词
D O I
10.1109/ICSC50631.2021.00055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main essence of word representation in a vector space is to preserve the similarity between the words. Traditional measures of word similarity retain the contextual or semantic affinity among the words. In this study, we propose an alternative word embedding scheme which considers the temporal relationships among the words. We employ the Google Trends search queries along with the respective time series information to represent words in a vector space. Our experiments show that the proposed representation is capable of incorporating temporal context that is otherwise unavailable in conventional word representations.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 50 条
  • [31] Task-Optimized Word Embeddings for Text Classification Representations
    Gupta, Sukrat
    Kanchinadam, Teja
    Conathan, Devin
    Fung, Glenn
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 5
  • [32] Improved Word Representations Via Summed Target and Context Embeddings
    Fulda, Nancy
    Robinson, Nathaniel
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 169 - 174
  • [33] FAST OOV WORDS INCORPORATION USING STRUCTURED WORD EMBEDDINGS FOR NEURAL NETWORK LANGUAGE MODEL
    Chen, Ruinian
    Yu, Kai
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6119 - 6123
  • [34] Unsupervised Word Sense Disambiguation Using Word Embeddings
    Moradi, Behzad
    Ansari, Ebrahim
    Zabokrtsky, Zdenek
    PROCEEDINGS OF THE 2019 25TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2019, : 228 - 233
  • [35] Beyond Words: A Comparative Analysis of LLM Embeddings for Effective Clustering
    Keraghe, Imed
    Morbieu, Stanislas
    Nadif, Mohamed
    ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT I, IDA 2024, 2024, 14641 : 205 - 216
  • [36] Texture representations using subspace embeddings
    Yang, Xiaodong
    Tian, YingLi
    PATTERN RECOGNITION LETTERS, 2013, 34 (10) : 1130 - 1137
  • [37] Learning Chinese Word Embeddings With Words and Subcharacter N-Grams
    Kang, Ruizhi
    Zhang, Hongjun
    Hao, Wenning
    Cheng, Kai
    Zhang, Guanglu
    IEEE ACCESS, 2019, 7 : 42987 - 42992
  • [38] Contextual Generation of Word Embeddings for Out of Vocabulary Words in Downstream Tasks
    Garneau, Nicolas
    Leboeuf, Jean-Samuel
    Lamontagne, Luc
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 563 - 569
  • [39] Regional and Temporal Patterns of Alpha-Gal Allergy Using Google Trends
    Iglesia, Edward G. A.
    Stone, Cosby
    Commins, Scott P.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2019, 143 (02) : AB161 - AB161
  • [40] Investigating temporal patterns of public interest in skin whitening using Google Trends
    Shah, Syed F. H.
    Shah, Syed A.
    Merchant, Serena A.
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 2021, 60 (04) : E160 - E161