Invariant Quantum States of Quadratic Hamiltonians

被引:11
|
作者
Dodonov, Viktor V. [1 ,2 ]
机构
[1] Univ Brasilia, Inst Phys, POB 04455, BR-70919970 Brasilia, DF, Brazil
[2] Univ Brasilia, Int Ctr Phys, BR-70919970 Brasilia, DF, Brazil
关键词
covariance matrix; positively (semi)definite matrices; symplectic transformations; charged particle in homogeneous magnetic fields; generalized frequency converter; TIME-DEPENDENT INVARIANTS; PARTIALLY COHERENT BEAMS; WIGNER DISTRIBUTION FUNCTION; CHARGED-PARTICLE; GEOMETRIC PHASES; PARAMETRIC CHARACTERIZATION; UNIVERSAL INVARIANTS; HARMONIC-OSCILLATOR; MOMENT INVARIANTS; GREEN-FUNCTIONS;
D O I
10.3390/e23050634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of finding covariance matrices that remain constant in time for arbitrary multi-dimensional quadratic Hamiltonians (including those with time-dependent coefficients) is considered. General solutions are obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] QUADRATIC HAMILTONIANS IN PHASE-SPACE QUANTUM-MECHANICS
    GADELLA, M
    GRACIABONDIA, JM
    NIETO, LM
    VARILLY, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2709 - 2738
  • [22] Quadratic quantum Hamiltonians: General canonical transformation to a normal form
    Kustura, Katja
    Rusconi, Cosimo C.
    Romero-Isart, Oriol
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [23] Rotationally invariant Hamiltonians for nuclear spectra based on quantum algebras
    Bonatsos, D
    Kotsos, BA
    Raychev, PP
    Terziev, PA
    PHYSICAL REVIEW C, 2002, 66 (05): : 21
  • [24] Translationally Invariant Universal Quantum Hamiltonians in 1D
    Tamara Kohler
    Stephen Piddock
    Johannes Bausch
    Toby Cubitt
    Annales Henri Poincaré, 2022, 23 : 223 - 254
  • [25] Translationally Invariant Universal Quantum Hamiltonians in 1D
    Kohler, Tamara
    Piddock, Stephen
    Bausch, Johannes
    Cubitt, Toby
    ANNALES HENRI POINCARE, 2022, 23 (01): : 223 - 254
  • [26] Amplification of quadratic Hamiltonians
    Arenz, Christian
    Bondar, Denys, I
    Burgarth, Daniel
    Cormick, Cecilia
    Rabitz, Herschel
    QUANTUM, 2020, 4
  • [27] Exponentiability of quadratic Hamiltonians
    Nielsen, EB
    Rask, O
    REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (02) : 177 - 186
  • [28] Dynamics of the Wigner and Weyl functions for open quantum systems with quadratic hamiltonians
    Kupsch, I
    Smolyanov, OG
    DOKLADY MATHEMATICS, 2005, 72 (02) : 747 - 751
  • [29] Quadratic Hamiltonians and Their Renormalization
    Derezinski, Jan
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 89 - 102
  • [30] Bosonic quadratic Hamiltonians
    Derezinski, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)