A clean synthesis approach to biocompatible amphiphilic conetworks via reversible addition-fragmentation chain transfer polymerization and thiol-ene chemistry

被引:5
|
作者
Zhang, Li [1 ]
Zhang, Chengfeng [1 ]
Peng, Xiaoquan [1 ]
He, Chunju [2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 21期
基金
美国国家科学基金会;
关键词
MODEL CONETWORKS; CO-NETWORKS; 2-(DIMETHYLAMINO)ETHYL METHACRYLATE; RADICAL POLYMERIZATION; FUNCTIONAL POLYMERS; RAFT POLYMERIZATION; SWELLING BEHAVIOR; BLOCK-COPOLYMERS; CROSS-LINKING; MEMBRANES;
D O I
10.1039/c5ra25007b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of amphiphilic block copolymers containing hydrophobic polydimethylsiloxane (PDMS) segments and hydrophilic poly(N,N-dimethylacrylamide) (PDMAAm) segments have been synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, which were then crosslinked into well-defined amphiphilic conetworks (APCNs) via ultraviolet (UV) induced thiol-ene click chemistry. Briefly, a PDMS-based RAFT agent was synthesized from the esterification of trithiocarbonate and bis(hydroxyethyloxypropyl) PDMS, and was used to control the RAFT polymerization of monomer DMAAm and allyl methacrylate (AMA) to form amphiphilic copolymers with a well-defined molecular mass and narrow dispersity. The amphiphilic copolymers were then crosslinked via UV induced thiol-ene click chemistry into APCNs, which showed unique amphiphilic characteristics as well as good mechanical properties, making them potential candidates in biomaterials. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) inferred that the resultant APCN exhibited the behavior of microphase separation with a small channel size and uniform phase domain. Therefore, this kind of APCN possessed excellent comprehensive properties, i.e. a well-defined and co-continuous microstructure and high water uptake properties with a homogeneous hydrophilic channel, low cytotoxicity, high mechanical strength (2.1 +/- 0.7 MPa) and elongation ratio (173 +/- 17%), suggesting a promising biomaterial candidate for contact lenses, drug controlled systems, biomedical scaffolds for tissue engineering and supports for biocatalysts.
引用
收藏
页码:17228 / 17238
页数:11
相关论文
共 50 条
  • [21] Reversible Addition-Fragmentation Chain Transfer Polymerization of Vinyl Chloride
    Abreu, Carlos M. R.
    Mendonca, Patricia V.
    Serra, Armenio C.
    Coelho, Jorge F. J.
    Popov, Anatoliy V.
    Gryn'ova, Ganna
    Coote, Michelle L.
    Guliashvili, Tamaz
    MACROMOLECULES, 2012, 45 (05) : 2200 - 2208
  • [22] Reversible addition-fragmentation chain-transfer polymerization of styrene
    Benicewicz, Brian C.
    Nasrullah, Mohammed J.
    Raghunadh, V.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U4237 - U4237
  • [23] Photoregulated reversible addition-fragmentation chain transfer (RAFT) polymerization
    Li, Shenzhen
    Han, Guang
    Zhang, Wangqing
    POLYMER CHEMISTRY, 2020, 11 (11) : 1830 - 1844
  • [24] Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization
    Wang, Yongjin
    Du, Jiaman
    Huang, Hanchu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (12)
  • [25] Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization
    Ozturk, Temel
    Kaygin, Oguz
    Goktas, Melahat
    Hazer, Baki
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2016, 53 (06): : 362 - 367
  • [26] Combination of Surface Initiated Reversible Addition Fragmentation Chain Transfer Polymerization, Thiol-Ene Click Chemistry and Coordination Chemistry for the Fabrication of a Novel Photo luminescent Hydroxyapatite Nanohybrids
    Bach, Long Giang
    Cao, Xuan Thang
    Islam, Md Rafiqul
    Kim, Hyun Gyu
    Lim, Kwon Taek
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 5897 - 5900
  • [27] Synthesis of Poly(Methyl Methacrylate)-Based Polyrotaxane via Reversible Addition-Fragmentation Chain Transfer Polymerization
    Wang, Yu-Cheng
    Maeda, Rina
    Kali, Gergely
    Yokoyama, Hideaki
    Wenz, Gerhard
    Ito, Kohzo
    ACS MACRO LETTERS, 2020, 9 (12) : 1853 - 1857
  • [28] Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization
    Stenzel-Rosenbaum, M
    Davis, TP
    Chen, V
    Fane, AG
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (16) : 2777 - 2783
  • [29] Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry
    Ye, Piaoran
    Cao, Peng-Fei
    Su, Zhe
    Advincula, Rigoberto
    POLYMER INTERNATIONAL, 2017, 66 (09) : 1252 - 1258
  • [30] pH-responsive micellization of amphiphilic diblock copolymers synthesized via reversible addition-fragmentation chain transfer polymerization
    Yusa, S
    Shimada, Y
    Mitsukami, Y
    Yamamoto, T
    Morishima, Y
    MACROMOLECULES, 2003, 36 (11) : 4208 - 4215