On the rank minimization problem

被引:0
|
作者
Kim, Y [1 ]
Mesbahi, M [1 ]
机构
[1] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
关键词
rank minimization under LMI constraints; semidefinite programming; nonconvex quadratically constrained quadratic programs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
After a brief overview of the problem of finding the extremal (minimum or maximum) rank positive semi-definite matrix subject to matrix inequalities, we identify a few new classes of such problems that can be efficiently solved. We then proceed to present an algorithm for solving the general class of rank minimization problems.
引用
收藏
页码:2015 / 2020
页数:6
相关论文
共 50 条
  • [1] On the rank minimization problem and its control applications
    Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Groove Drive, Pasadena, CA 91109, United States
    Syst Control Lett, 1 (31-36):
  • [2] On the rank minimization problem and its control applications
    Mesbahi, M
    SYSTEMS & CONTROL LETTERS, 1998, 33 (01) : 31 - 36
  • [3] A smoothing proximal gradient algorithm for matrix rank minimization problem
    Quan Yu
    Xinzhen Zhang
    Computational Optimization and Applications, 2022, 81 : 519 - 538
  • [4] Approximate Message Passing for Structured Affine Rank Minimization Problem
    Li, Yangqing
    Yin, Changchuan
    Chen, Wei
    Han, Zhu
    IEEE ACCESS, 2017, 5 : 10093 - 10107
  • [5] A smoothing proximal gradient algorithm for matrix rank minimization problem
    Yu, Quan
    Zhang, Xinzhen
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) : 519 - 538
  • [6] A penalty decomposition method for rank minimization problem with affine constraints
    Jin, Zheng-Fen
    Wan, Zhongping
    Zhao, Xiaoke
    Xiao, Yunhai
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (16) : 4859 - 4870
  • [7] Stochastic Variance Reduced Gradient for Affine Rank Minimization Problem
    Han, Ningning
    Nie, Juan
    Lu, Jian
    Ng, Michael K.
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (02): : 1118 - 1144
  • [8] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] Uniqueness Guarantee of Solutions of Tensor Tubal-Rank Minimization Problem
    Zhang, Feng
    Hou, Jingyao
    Wang, Jianjun
    Wang, Wendong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 540 - 544
  • [10] On the rank minimization problem over a positive semidefinite linear matrix inequality
    Mesbahi, M
    Papavassilopoulos, GP
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (02) : 239 - 243