Structural, electronic, dynamical and thermodynamic properties of Ca10(PO4)6(OH)2 and Sr10(PO4)6(OH)2: First-principles study

被引:12
|
作者
Yuan, Zhihong [1 ]
Li, Shichang [1 ]
Liu, Junchao [1 ]
Kong, Xianggang [1 ]
Gao, Tao [1 ,2 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, Key Lab High Energy Dens Phys & Technol, Minist Educ, Chengdu 610064, Sichuan, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Ca-10(PO4)(6)(OH)(2); Sr-10(PO4)(6)(OH)(2); Weak hydrogen bond; Dynamical properties; Thermodynamic properties; AB-INITIO; DOPED HYDROXYAPATITE; COMPUTER-SIMULATION; HYDROXYL IONS; STRONTIUM; CRYSTALS; SPECTRA; SPECTROSCOPY; CALCIUM; WASTE;
D O I
10.1016/j.ijhydene.2018.03.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory (DFT) with optPBE-vdW functional is used to simulate the structural, electronic, dynamical and thermodynamic properties of Ca-10(PO4)(6)(OH)(2)(Ca-HA) and Sr-10(PO4)(6)(OH)(2)(Sr-HA). The calculated structural properties within optPBE-vdW functional is found to yield better agreement with the experimental results, which indirectly suggests the important role of weak hydrogen bond in this crystal. The calculated electronic properties indicate that Ca-HA and Sr-HA are insulator materials with indirect band gap of 5.52 eV and 5.10 eV, respectively. The detailed dynamical properties of two apatites are obtained by the linear-response approach. With replacement of Caby Sr, the librational mode of OH group decreases from 612 cm(-1) to 569 cm(-1), the stretching mode of OH group increases from 3614.5 cm(-1)-3649.9 cm(-1), which is consistent with the experimental results. Finally, some phonon related thermodynamic properties, such as Helmholtz free energy F, internal energy E, entropy S and heat capacity Cv of Sr -HA and Ca -HA are studied according to the phonon calculations within the harmonic approximation. The present calculation results of two apatites with optPBE-vdW functional are in good agreement with the existing experimental. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13639 / 13648
页数:10
相关论文
共 50 条
  • [1] THERMODYNAMIC PROPERTIES OF CA10(PO4)6(OH)2
    PALKIN, VA
    KUZINA, TA
    ORLOVSKII, VP
    EZHOVA, ZA
    RODICHEVA, GV
    SUKHANOVA, GE
    ZHURNAL NEORGANICHESKOI KHIMII, 1991, 36 (12): : 3060 - 3062
  • [2] Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles
    孔祥刚
    袁志红
    虞游
    高涛
    马生贵
    Chinese Physics B, 2017, 26 (08) : 341 - 349
  • [3] Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles
    Kong, Xianggang
    Yuan, Zhihong
    Yu, You
    Gao, Tao
    Ma, Shenggui
    CHINESE PHYSICS B, 2017, 26 (08)
  • [4] Thermodynamic functions of Ba10(PO4)6Cl2, Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2
    Babu, R.
    Jena, Hrudananda
    Kutty, K. V. Govindan
    Nagarajan, K.
    THERMOCHIMICA ACTA, 2011, 526 (1-2) : 78 - 82
  • [5] Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC
    Krishnan, R. Venkata
    Jena, Hrudananda
    Kutty, K. V. Govindan
    Nagarajan, K.
    THERMOCHIMICA ACTA, 2008, 478 (1-2) : 13 - 16
  • [6] THERMOLUMINESCENT PROPERTIES OF CA10(PO4)6(OH)2=MN HYDROXYAPATITE
    LAPRAZ, D
    BAUMER, A
    KELLER, P
    TURCO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1977, 285 (12): : 291 - 294
  • [7] The chalcogenide phosphate apatites Ca10(PO4)6S, Sr10(PO4)6S, Ba10(PO4)6S and Ca10(PO4)6Se
    Henning, PA
    Adolfsson, E
    Grins, J
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2000, 215 (04): : 226 - 230
  • [8] Preparation of porous Ca10(PO4)6(OH)2 and β-Ca3(PO4)2 bioceramics
    Engin, NÖ
    Tas, AC
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (07) : 1581 - 1584
  • [9] 中和法制备Ca10(PO4)6(OH)2
    王福善
    王琳
    陈勇
    石化技术与应用, 1999, (02) : 18+20+19+21 - 18+20+19+21
  • [10] STRUCTURE AND PROPERTIES OF CA10(PO4)6F2(OH)2
    ASTRELIN, IM
    MANCHUK, NM
    ZHURNAL NEORGANICHESKOI KHIMII, 1989, 34 (10): : 2492 - 2494