Sequences of 0's and 1's: Special sequence spaces with the separable Hahn property

被引:1
|
作者
Boos, J. [1 ]
Leiger, T.
机构
[1] Fernuniv, FB Math, D-58084 Hagen, Germany
[2] Tartu Ulikool, Puhta Mat Inst, EE-50409 Tartu, Estonia
关键词
Hahn property; Nikodym property; separable Hahn property; matrix Hahn property; inclusion theorems; dense barrelled subspaces; Hahn theorem;
D O I
10.1007/s10474-007-5278-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As pointed out in [4] the paper [2], authored by G. Bennett, J. Boos and T. Leiger, contains a nontrivial gap in the argumentation of the proof of Theorem 5.2 which is one of main results of that paper and has been applied three times. Till now neither the gap is closed nor a counterexample has been stated. That is why the authors have examined in [4] the situation around the 'gap' aiming to a better understanding for the gap. The aim of this paper is to prove the mentioned applications of the theorem in doubt by using gliding hump arguments (quite similar to the classical proofs of the Theorems of Schur and Hahn in the first case (cf. [3]) and a very technical and artful construction, being of independent mathematical interest, in the second case).
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [31] VOLUME ESTIMATES FOR (0,S)-SEQUENCES
    XIAO, YJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (02): : 101 - 104
  • [32] On Erdős and Sárközy’s sequences with Property P
    Christian Elsholtz
    Stefan Planitzer
    Monatshefte für Mathematik, 2017, 182 : 565 - 575
  • [33] New Sequence Spaces and Function Spaces on Interval [0,1]
    Xu, Cheng-Zhong
    Xu, Gen-Qi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [34] WIDTH SEQUENCES FOR SPECIAL CLASSES OF (0, 1)-MATRICES
    FULKERSON, DR
    RYSER, HJ
    CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (02): : 371 - &
  • [35] A note on spaces having the S property
    Whyburn, GT
    AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 : 536 - 538
  • [36] SEPARABLE POTENTIAL MODEL FOR S-1/0 NEUTRON-PROTON INTERACTION
    SIROHI, APS
    SRIVASTAVA, MK
    NUCLEAR PHYSICS A, 1972, A179 (02) : 524 - +
  • [37] Benford's law and distribution functions of sequences in (0,1)
    Balaz, V.
    Nagasaka, K.
    Strauch, O.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 449 - 463
  • [38] Topological properties of the sequence spaces Sν
    Aubry, Jean-Marie
    Bastin, Francoise
    Dispa, Sophie
    Jaffard, Stephane
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) : 364 - 387
  • [39] Hotelling's T2 in separable Hilbert spaces
    Pini, Alessia
    Stamm, Aymeric
    Vantini, Simone
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 284 - 305
  • [40] Baire property of spaces of [0, 1]-valued continuous functions
    Alexander V. Osipov
    Evgenii G. Pytkeev
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117