In situ lattice strains analysis in titanium during a uniaxial tensile test

被引:8
|
作者
Gloaguen, D. [1 ]
Girault, B. [1 ]
Fajoui, J. [1 ]
Klosek, V. [2 ]
Moya, M. -J. [1 ]
机构
[1] Univ Nantes, Inst Rech Genie Civil & Mecan, UMR CNRS 6183, 58 Rue Michel Ange BP 420, F-44606 St Nazaire, France
[2] CEA Saclay, CEA, IRAMIS, Lab Leon Brillouin,UMR12,CEA CNRS, F-91191 Gif Sur Yvette, France
关键词
Crystal plasticity; Titanium; Neutron diffraction; Intergranular strains; Strain pole figure; Self-consistent model; ALPHA-TITANIUM; DEFORMATION MECHANISMS; INTERGRANULAR STRAINS; NEUTRON-DIFFRACTION; RESIDUAL-STRESSES; EVOLUTION; TEXTURE; ALLOY; POLYCRYSTALS; ZIRCALOY-2;
D O I
10.1016/j.msea.2016.03.089
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In situ neutron diffraction experiments have been performed under uniaxial tensile testing in a commercially pure titanium in order to determine strain pole figures. The evolution of intergranular strains was observed in the bulk material along multiple orientations for 4 reflections: {10.0}, {10.1}, {11.0} and {00.2}. The experimental data was used to test an elasto-plastic self-consistent model. A particular focus has been devoted to the relationship between the internal strains and the deformation systems activity. The model was in agreement with the experiments, and the simulations reproduced the main features observed on the in situ measured strain pole figures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [21] X-ray analysis of work-hardening process for polycrystalline α-brass during uniaxial tensile test
    Tung, Feng'en
    Wang, Yuming
    Jinshu Xuebao/Acta Metallurgica Sinica, 1989, 25 (02):
  • [22] Determination of fracture toughness by uniaxial tensile test
    Oh, HK
    ENGINEERING FRACTURE MECHANICS, 1996, 55 (05) : 865 - 868
  • [23] Determination of fracture toughness by uniaxial tensile test
    Ajou Univ, Soowon, Korea, Republic of
    Eng Fract Mech, 5 (865-868):
  • [24] Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Test
    Mata, H.
    Santos, A.
    Fernandes, A. A.
    Valente, R. A. F.
    Parente, M. P. L.
    Natal Jorge, R.
    14TH INTERNATIONAL CONFERENCE ON MATERIAL FORMING ESAFORM, 2011 PROCEEDINGS, 2011, 1353 : 1232 - 1237
  • [25] Lattice strains in crystals under uniaxial stress field
    Uchida, T
    Funamori, N
    Yagi, T
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (02) : 739 - 746
  • [26] In-situ observation of strain evolution in CP-Ti during uniaxial tensile loading
    Bettles, C. J.
    Gibson, M. A.
    Stevenson, A. W.
    Tomus, D.
    Lynch, P. A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 619 (1-3): : 302 - 305
  • [27] A Study on Uniaxial Tensile Deformation Behavior of Superelastic Titanium Alloy
    Jeong, Hye-Jin
    Viet Tien Luu
    Jeong, Yong-Ha
    Hong, Sung-Tae
    Han, Heung Nam
    KOREAN JOURNAL OF METALS AND MATERIALS, 2020, 58 (03): : 162 - 168
  • [28] RELATIONSHIPS BETWEEN MICROSTRUCTURE AND BEHAVIOR IN UNIAXIAL TENSILE TEST
    WILSON, DV
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1974, 7 (07) : 954 - 968
  • [29] Concrete uniaxial tensile strength and cylinder splitting test
    Lin, ZH
    Wood, L
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2003, 129 (05): : 692 - 698
  • [30] The influence of the specimen shape on the results of the uniaxial tensile test
    Weise, C.
    Blasl, A.
    ADVANCED TESTING AND CHARACTERISATION OF BITUMINOUS MATERIALS, VOLS 1 AND 2, 2009, : 899 - 908