Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures - the interplay between charge and energy transfer

被引:13
|
作者
Karpinska, M. [1 ,2 ,3 ]
Jasinski, J. [4 ]
Kempt, R. [5 ]
Ziegler, J. D. [6 ]
Sansom, H. [7 ]
Taniguchi, T. [8 ]
Watanabe, K. [9 ]
Snaith, H. J. [7 ]
Surrente, A. [4 ]
Dyksik, M. [1 ,2 ,4 ]
Maude, D. K. [1 ,2 ]
Klopotowski, L. [3 ]
Chernikov, A. [6 ,10 ,11 ]
Kuc, A. [12 ]
Baranowski, M. [4 ]
Plochocka, P. [1 ,2 ,4 ]
机构
[1] CNRS UGA Ups INSA, Lab Natl Champs Magnet Intenses, UPR 3228, Grenoble, France
[2] CNRS UGA Ups INSA, Lab Natl Champs Magnet Intenses, UPR 3228, Toulouse, France
[3] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[4] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[5] Tech Univ Dresden, Bergstr 66c, D-01062 Dresden, Germany
[6] Univ Regensburg, Dept Phys, D-93053 Regensburg, Germany
[7] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[8] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 305004, Japan
[9] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 305004, Japan
[10] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, D-01062 Dresden, Germany
[11] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence Ct Qmat, D-01062 Dresden, Germany
[12] Helmholtz Zentrum Dresden Rossendorf, Permoserstr 15, D-04318 Leipzig, Germany
关键词
TRANSITION-METAL DICHALCOGENIDES; MONOLAYER MOS2; BAND-STRUCTURE; OPTOELECTRONICS; SEMICONDUCTORS; PHYSICS; WS2;
D O I
10.1039/d2nr00877g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
van der Waals crystals have opened a new and exciting chapter in heterostructure research, removing the lattice matching constraint characteristics of epitaxial semiconductors. They provide unprecedented flexibility for heterostructure design. Combining two-dimensional (2D) perovskites with other 2D materials, in particular transition metal dichalcogenides (TMDs), has recently emerged as an intriguing way to design hybrid opto-electronic devices. However, the excitation transfer mechanism between the layers (charge or energy transfer) remains to be elucidated. Here, we investigate PEA(2)PbI(4)/MoSe2 and (BA)(2)PbI4/MoSe2 heterostructures by combining optical spectroscopy and density functional theory (DFT) calculations. We show that band alignment facilitates charge transfer. Namely, holes are transferred from TMDs to 2D perovskites, while the electron transfer is blocked, resulting in the formation of interlayer excitons. Moreover, we show that the energy transfer mechanism can be turned on by an appropriate alignment of the excitonic states, providing a rule of thumb for the deterministic control of the excitation transfer mechanism in TMD/2D-perovskite heterostructures.
引用
收藏
页码:8085 / 8095
页数:11
相关论文
共 50 条
  • [41] Spin dependent charge transfer in MoSe2/hBN/Ni hybrid structures
    Tornatzky, H.
    Robert, C.
    Renucci, P.
    Han, B.
    Blon, T.
    Lassagne, B.
    Ballon, G.
    Lu, Y.
    Watanabe, K.
    Taniguchi, T.
    Urbaszek, B.
    Lopes, J. M. J.
    Marie, X.
    APPLIED PHYSICS LETTERS, 2021, 119 (26)
  • [42] Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures
    Nayak, Pramoda K.
    Horbatenko, Yevhen
    Ahn, Seonjoon
    Kim, Gwangwoo
    Lee, Jae-Ung
    Ma, Kyung Yeol
    Jang, A-Rang
    Lim, Hyunseob
    Kim, Dogyeong
    Ryu, Sunmin
    Cheong, Hyeonsik
    Park, Noejung
    Shin, Hyeon Suk
    ACS NANO, 2017, 11 (04) : 4041 - 4050
  • [43] Transition between quadrupole and staggered dipole interlayer excitons in WSe2/MoSe2/WSe2 heterotrilayers
    Xie, Yongzhi
    Chen, Fengyu
    Gao, Yuchen
    Wang, Yunkun
    Mao, Jun
    Liu, Qinyun
    Chu, Saisai
    Yang, Hong
    Ye, Yu
    Gong, Qihuang
    Feng, Ji
    Gao, Yunan
    PHYSICAL REVIEW B, 2024, 110 (20)
  • [44] Unraveling the strain tuning mechanism of interlayer excitons in WSe2/MoSe2 heterostructure
    Ge, Anping
    Ge, Xun
    Sun, Liaoxin
    Lu, Xinle
    Ma, Lei
    Zhao, Xinchao
    Yao, Bimu
    Zhang, Xin
    Zhang, Tao
    Jing, Wenji
    Zhou, Xiaohao
    Shen, Xuechu
    Lu, Wei
    NANOTECHNOLOGY, 2024, 35 (17)
  • [45] Lasing of moiré trapped MoSe2/WSe2 interlayer excitons coupled to a nanocavity
    Qian, Chenjiang
    Troue, Mirco
    Figueiredo, Johannes
    Soubelet, Pedro
    Villafane, Viviana
    Beierlein, Johannes
    Klembt, Sebastian
    Stier, Andreas V.
    Hoefling, Sven
    Holleitner, Alexander W.
    Finley, Jonathan J.
    SCIENCE ADVANCES, 2024, 10 (02):
  • [46] Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures
    Fang, Qiyi
    Shang, Qiuyu
    Zhao, Liyun
    Wang, Rui
    Zhang, Zhepeng
    Yang, Pengfei
    Sui, Xinyu
    Qiu, Xiaohui
    Liu, Xinfeng
    Zhang, Qing
    Zhang, Yanfeng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (07): : 1655 - 1662
  • [47] Strong coupling of excitons in 2D MoSe2/hBN heterostructure with optical bound states in the continuum
    Benimetskiy, F. A.
    Kravtsov, V.
    Khestanova, E.
    Mukhin, I. S.
    Sinev, I. S.
    Samusev, A. K.
    Shelykh, I. A.
    Krizhanovskii, D. N.
    Skolnick, M. S.
    Iorsh, I. V.
    METANANO 2019, 2020, 1461
  • [48] Author Correction: Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface
    Malte Kremser
    Mauro Brotons-Gisbert
    Johannes Knörzer
    Janine Gückelhorn
    Moritz Meyer
    Matteo Barbone
    Andreas V. Stier
    Brian D. Gerardot
    Kai Müller
    Jonathan J. Finley
    npj 2D Materials and Applications, 5
  • [49] Indirect Excitons and Trions in MoSe2/WSe2 van der Waals Heterostructures
    Calman, E., V
    Fowler-Gerace, L. H.
    Choksy, D. J.
    Butov, L., V
    Nikonov, D. E.
    Young, I. A.
    Hu, S.
    Mishchenko, A.
    Geim, A. K.
    NANO LETTERS, 2020, 20 (03) : 1869 - 1875
  • [50] Charge transfer excitons and directional fluorescence of in-plane lateral MoSe2-WSe2 heterostructures
    Li, Ning
    Zhang, Na
    Wang, Jingang
    Sun, Mengtao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (10) : 8200 - 8209