Twin-lattice atom interferometry

被引:49
|
作者
Gebbe, Martina [1 ]
Siemss, Jan-Niclas [2 ,3 ]
Gersemann, Matthias [2 ]
Muentinga, Hauke [1 ,4 ]
Herrmann, Sven [1 ]
Laemmerzahl, Claus [1 ]
Ahlers, Holger [2 ,5 ]
Gaaloul, Naceur [2 ]
Schubert, Christian [2 ,5 ]
Hammerer, Klemens [3 ]
Abend, Sven [2 ]
Rasel, Ernst M. [2 ]
机构
[1] Univ Bremen, Zentrum Angew Raumfahrttechnol & Mikrogravitat ZA, Bremen, Germany
[2] Leibniz Univ Hannover, Inst Quantenopt, Hannover, Germany
[3] Leibniz Univ Hannover, Inst Theoret Phys, Hannover, Germany
[4] German Aerosp Ctr DLR, Inst Satellite Geodesy & Inertial Sensing, Bremen, Germany
[5] German Aerosp Ctr DLR, Inst Satellite Geodesy & Inertial Sensing, Hannover, Germany
关键词
BLOCH OSCILLATIONS; EINSTEIN; ENTANGLEMENT; CONSTANT;
D O I
10.1038/s41467-021-22823-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors. Atom interferometers can be useful for precision measurement of fundamental constants and sensors of different type. Here the authors demonstrate a compact twin-lattice atom interferometry exploiting Bose-Einstein condensates (BECs) of 87 Rb atoms.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Atom optics - Atom interferometry on a chip
    Cronin, Alexander
    NATURE PHYSICS, 2006, 2 (10) : 661 - 662
  • [22] Optimizing atom interferometry on atom chips
    Hohenester, Ulrich
    Grond, Julian
    Schmiedmayer, Joerg
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2009, 57 (11-12): : 1121 - 1132
  • [23] Precision atom interferometry
    Peters, A
    Chung, KY
    Young, B
    Hensley, J
    Chu, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2223 - 2233
  • [24] Monolithic atom interferometry
    Fiedler, Johannes
    Lefmann, Kim
    von Klitzing, Wolf
    Holst, Bodil
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [25] Lithium atom interferometry
    Jacquey, M.
    Miffre, A.
    Buchner, M.
    Trenec, G.
    Vigue, J.
    JOURNAL DE PHYSIQUE IV, 2006, 135 : 9 - 16
  • [26] Prospects for atom interferometry
    Godun, RM
    D'Arcy, MB
    Summy, GS
    Burnett, K
    CONTEMPORARY PHYSICS, 2001, 42 (02) : 77 - 95
  • [27] Tractor atom interferometry
    Duspayev, A.
    Raithel, G.
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [28] Atom interferometry on a chip
    Alexander Cronin
    Nature Physics, 2006, 2 : 661 - 662
  • [29] Longitudinal atom interferometry
    Kokorowski, DA
    Roberts, TD
    Rubenstein, RA
    Smith, ET
    Pritchard, DE
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (5-7): : 615 - 622
  • [30] Atom optics, guided atoms, and atom interferometry
    Arlt, J
    Birkl, G
    Rasel, E
    Ertmer, W
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 50, 2005, 50 : 55 - 89