About generalized zeros of non-regular generalized Nevanlinna functions

被引:5
|
作者
Luger, A [1 ]
机构
[1] Tech Univ Vienna, Inst Anal & Tech Math, A-1040 Vienna, Austria
关键词
generalized Nevanlinna function; generalized zero;
D O I
10.1007/s000200300016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The definition of a generalized zero is extended to those operator valued generalized Nevanlinna functions Q is an element of N-K(H) which are not regular. Differences to the regular case are pointed out and it is shown that also for a singular generalized Nevanlinna function Q E X (R) there exists a rational function B(z) which collects the generalized poles and zeros that are not of positive type, such that the function B((z) over bar)*Q(z)B(z) belongs to the Nevanlinna class No(H).
引用
收藏
页码:461 / 473
页数:13
相关论文
共 50 条
  • [21] ON THE ZEROS OF GENERALIZED AIRY FUNCTIONS
    ELBERT, A
    LAFORGIA, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (04): : 521 - 526
  • [22] Zeros of Generalized Holomorphic Functions
    A. Khelif
    D. Scarpalezos
    Monatshefte für Mathematik, 2006, 149 : 323 - 335
  • [23] ZEROS OF GENERALIZED AIRY FUNCTIONS
    BALDWIN, P
    MATHEMATIKA, 1985, 32 (63) : 104 - 117
  • [24] Zeros of generalized holomorphic functions
    Khelif, A.
    Scarpalezos, D.
    MONATSHEFTE FUR MATHEMATIK, 2006, 149 (04): : 323 - 335
  • [25] Products of generalized Nevanlinna functions with symmetric rational functions
    Hassi, S.
    Wietsma, H. L.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) : 3321 - 3376
  • [26] Generalized Nevanlinna functions with essentially positive spectrum
    Kaltenbaeck, Michael
    Winkler, Henrik
    Woracek, Harald
    JOURNAL OF OPERATOR THEORY, 2006, 55 (01) : 17 - 48
  • [27] A factorization result for generalized Nevanlinna functions of the classNk
    A. Dijksma
    H. Langer
    A. Luger
    Yu. Shondin
    Integral Equations and Operator Theory, 2000, 36 : 121 - 125
  • [28] Generalized Schur-Nevanlinna functions and their realizations
    Lilleberg, Lassi
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (05)
  • [29] Boundary interpolation and rigidity for generalized Nevanlinna functions
    Alpay, Daniel
    Dijksma, Aad
    Langer, Heinz
    Reich, Simeon
    Shoikhet, David
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 335 - 364
  • [30] SLICES OF PARAMETER SPACES OF GENERALIZED NEVANLINNA FUNCTIONS
    Chen, Tao
    Keen, Linda
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) : 5659 - 5681