About generalized zeros of non-regular generalized Nevanlinna functions

被引:5
|
作者
Luger, A [1 ]
机构
[1] Tech Univ Vienna, Inst Anal & Tech Math, A-1040 Vienna, Austria
关键词
generalized Nevanlinna function; generalized zero;
D O I
10.1007/s000200300016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The definition of a generalized zero is extended to those operator valued generalized Nevanlinna functions Q is an element of N-K(H) which are not regular. Differences to the regular case are pointed out and it is shown that also for a singular generalized Nevanlinna function Q E X (R) there exists a rational function B(z) which collects the generalized poles and zeros that are not of positive type, such that the function B((z) over bar)*Q(z)B(z) belongs to the Nevanlinna class No(H).
引用
收藏
页码:461 / 473
页数:13
相关论文
共 50 条
  • [1] About Generalized Zeros of Non-Regular Generalized Nevanlinna Functions
    Annemarie Luger
    Integral Equations and Operator Theory, 2003, 45 : 461 - 473
  • [2] A factorization of regular generalized Nevanlinna functions
    Luger, A
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 43 (03) : 326 - 345
  • [3] A factorization of regular generalized Nevanlinna functions
    Annemarie Luger
    Integral Equations and Operator Theory, 2002, 43 : 326 - 345
  • [4] Zeros of nonpositive type of generalized Nevanlinna functions with one negative square
    de Snoo, Henk
    Winkler, Henrik
    Wojtylak, Michal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 399 - 417
  • [5] A characterization of generalized poles of generalized Nevanlinna functions
    Luger, Annemarie
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (08) : 891 - 910
  • [6] Generalized Nevanlinna functions and multivalency
    Wietsma, Hendrik Luit
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (03): : 997 - 1008
  • [7] Generalized Nevanlinna functions with polynomial asymptotic behaviour at infinity and regular perturbations
    Derkach, V
    Hassi, S
    De Snoo, H
    OPERATOR THEORY AND ANALYSIS, 2001, 122 : 169 - 189
  • [8] Convergence of generalized Nevanlinna functions
    Langer, Heinz
    Luger, Annemarie
    Matsaev, Vladimir
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 425 - 437
  • [9] Convergence of generalized Nevanlinna functions
    Heinz Langer
    Annemarie Luger
    Vladimir Matsaev
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 425 - 437
  • [10] Generalized convexity for non-regular optimization problems with conic constraints
    B. Hernández-Jiménez
    R. Osuna-Gómez
    M. A. Rojas-Medar
    L. Batista dos Santos
    Journal of Global Optimization, 2013, 57 : 649 - 662