Testing lattice conditional independence models based on monotone missing data

被引:3
|
作者
Wu, L
Perlman, MD
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
likelihood ratio test; multivariate normal data; restricted maximum likelihood estimates;
D O I
10.1016/S0167-7152(00)00098-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lattice conditional independence (LCI) models (Anderson and Perlman, 1991. Statist. Probab. Lett. 12, 465-486; 1993 Ann. Statist. 21, 1318-1358) can be applied to the analysis of missing data problems with non-monotone missing patterns. Closed-form maximum likelihood estimates can always be obtained under the LCI models naturally determined by the observed data patterns. In practice, it is important to test the appropriateness of LCI models. In the present paper, we derive explicit likelihood ratio tests for testing LCI models based on a monotone subset of the observed data. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 50 条
  • [41] Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing
    Peter W. van Rijn
    Usama S. Ali
    Hyo Jeong Shin
    Sean-Hwane Joo
    Psychometrika, 2024, 89 : 317 - 346
  • [42] Normalizing flows for conditional independence testing
    Duong, Bao
    Nguyen, Thin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (01) : 357 - 380
  • [43] On testing marginal versus conditional independence
    Guo, F. Richard
    Richardson, Thomas S.
    BIOMETRIKA, 2020, 107 (04) : 771 - 790
  • [44] Testing Conditional Independence of Discrete Distributions
    Canonne, Clement L.
    Diakonikolas, Ilias
    Kane, Daniel M.
    Stewart, Alistair
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 735 - 748
  • [45] Differentially Private Conditional Independence Testing
    Kalemaj, Iden
    Kasiviswanathan, Shiva Prasad
    Ramdas, Aaditya
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [46] Normalizing flows for conditional independence testing
    Bao Duong
    Thin Nguyen
    Knowledge and Information Systems, 2024, 66 (1) : 357 - 380
  • [47] Testing for conditional multiple marginal independence
    Bilder, CR
    Loughin, TM
    BIOMETRICS, 2002, 58 (01) : 200 - 208
  • [48] Bayesian hypothesis testing for Gaussian graphical models: Conditional independence and order constraints
    Williams, Donald R.
    Mulder, Joris
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 99
  • [49] NONPARAMETRIC CONDITIONAL LOCAL INDEPENDENCE TESTING
    Christgau, Alexander Mangulad
    Petersen, Lasse
    Hansen, Niels richard
    ANNALS OF STATISTICS, 2023, 51 (05): : 2116 - 2144
  • [50] MINIMAX OPTIMAL CONDITIONAL INDEPENDENCE TESTING
    Neykov, Matey
    Balakrishnan, Sivaraman
    Wasserman, Larry
    ANNALS OF STATISTICS, 2021, 49 (04): : 2151 - 2177