Richardson varieties in the Grassmannian

被引:0
|
作者
Kreiman, V [1 ]
Lakshmibai, V [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Richardson variety X-w(v) is defined to be the intersection of the Schubert variety X-w and the opposite Schubert variety X-v. For X-w(v) in the Grassmannian, we obtain a standard monomial basis for the homogeneous coordinate ring of X-w(v). We use this basis first to prove the vanishing of H-i(X-w(v), L-m), i > 0, m greater than or equal to 0, where L is the restriction to X-w(v) of the ample generator of the Picard group of the Grassmannian; then to determine a basis for the tangent space and a criterion for smoothness for X-w(v) at any T-fixed point e(tau); and finally to derive a recursive formula for the multiplicity of X-w(v) at any T-fixed point e(tau). Using the recursive formula, we show that the multiplicity of X-w(v) at e(tau) is the product of the multiplicity of X-w at e(tau) and the multiplicity of X-v at e(tau). This result allows us to generalize the Rosenthal-Zelevinsky determinantal formula for multiplicities at T-fixed points of Schubert varieties to the case of Richardson varieties.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 50 条
  • [21] Toric Richardson varieties
    Can, Mahir Bilen
    Saha, Pinakinath
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1770 - 1790
  • [22] SINGULARITIES OF RICHARDSON VARIETIES
    Knutson, Allen
    Woo, Alexander
    Yong, Alexander
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (02) : 391 - 400
  • [23] A classification of spherical Schubert varieties in the Grassmannian
    Hodges, Reuven
    Lakshmibai, Venkatramani
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [24] A classification of spherical Schubert varieties in the Grassmannian
    Reuven Hodges
    Venkatramani Lakshmibai
    Proceedings - Mathematical Sciences, 132
  • [25] The isomorphism problem for Grassmannian Schubert varieties
    Tarigradschi, Mihail
    Xu, Weihong
    JOURNAL OF ALGEBRA, 2023, 633 : 225 - 241
  • [26] Cluster structures in Schubert varieties in the Grassmannian
    Serhiyenko, K.
    Sherman-Bennett, M.
    Williams, L.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (06) : 1694 - 1744
  • [27] PROJECTED RICHARDSON VARIETIES AND AFFINE SCHUBERT VARIETIES
    He, Xuhua
    Lam, Thomas
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (06) : 2385 - 2412
  • [28] Zariski hyperplane section theorem for Grassmannian varieties
    Shimada, I
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (01): : 157 - 180
  • [29] Smooth torus quotients of Schubert varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [30] Conormal varieties on the cominuscule Grassmannian-II
    Singh, Rahul
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 551 - 576