Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations

被引:6
|
作者
Kikinzon, Evgeny [1 ]
Shashkov, Mikhail [2 ]
Garimella, Rao [1 ]
机构
[1] Los Alamos Natl Lab, Appl Math & Plasma Phys, T-5,MS B284, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Methods & Algorithms, XCP 4,MS F644, Los Alamos, NM 87545 USA
关键词
Multi-material problems; Interface reconstruction; CONSTRAINED OPTIMIZATION FRAMEWORK; INTERFACE RECONSTRUCTION; DIFFUSION EQUATION; CLOSURE;
D O I
10.1016/j.compfluid.2018.05.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian-Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstruction methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. We demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing. Published by Elsevier Ltd.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条
  • [21] Multi-material topology optimization for thermal buckling criteria
    Wu, Chi
    Fang, Jianguang
    Li, Qing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 1136 - 1155
  • [22] Multi-material topology optimization for automotive design problems
    Li, Chao
    Kim, Il Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2018, 232 (14) : 1950 - 1969
  • [23] Multi-material isogeometric topology optimization for thermoelastic metamaterials
    Xia, Zhaohui
    Zhao, Wanpeng
    Wang, Yingjun
    Li, Peng
    Xiao, Mi
    Gao, Liang
    International Journal of Heat and Mass Transfer, 2025, 245
  • [24] Robust topology optimization of multi-material structures considering uncertain graded interface
    Kang, Zhan
    Wu, Chunlei
    Luo, Yangjun
    Li, Ming
    COMPOSITE STRUCTURES, 2019, 208 : 395 - 406
  • [25] Multi-Material Topology Optimization Using Neural Networks
    Chandrasekhar, Aaditya
    Suresh, Krishnan
    COMPUTER-AIDED DESIGN, 2021, 136
  • [26] Material Interpolation in Multi-Material Topology Optimization for Magnetic Device Design
    Jung, Youngsuk
    Min, Seungjae
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (11)
  • [27] Multi-material topology optimization for practical lightweight design
    Li, Daozhong
    Kim, Il Yong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (03) : 1081 - 1094
  • [28] Topology optimization of multi-material structures with graded interfaces
    Chu, Sheng
    Xiao, Mi
    Gao, Liang
    Li, Hao
    Zhang, Jinhao
    Zhang, Xiaoyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 1096 - 1117
  • [29] Multi-material topology optimization for practical lightweight design
    Daozhong Li
    Il Yong Kim
    Structural and Multidisciplinary Optimization, 2018, 58 : 1081 - 1094
  • [30] Material efficiency in a multi-material world
    Lifset, Reid
    Eckelman, Matthew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1986):