MarsAtlas: A cortical parcellation atlas for functional mapping

被引:47
|
作者
Auzias, Guillaume [1 ,2 ]
Coulon, Olivier [1 ,2 ]
Brovelli, Andrea [1 ]
机构
[1] Aix Marseille Univ, CNRS, Inst Neurosci Timone, UMR 7289, Campus Sante Timone,27 Bd Jean Moulin, F-13385 Marseille, France
[2] Aix Marseille Univ, CNRS, Lab Sci Informat & Syst, UMR 7296, F-13385 Marseille, France
关键词
human brain atlas; cortical parcellation; cortical parameterization; dorsoventral and rostrocaudal axes; MEG; visuomotor behaviors; gammaband neural activity; functional segregation; DEEP SULCAL LANDMARKS; FREQUENCY GAMMA-OSCILLATIONS; HUMAN CEREBRAL-CORTEX; PARIETAL CORTEX; BOLD FMRI; CONNECTIVITY; DYNAMICS; SURFACE; EEG; MRI;
D O I
10.1002/hbm.23121
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. Hum Brain Mapp 37:1573-1592, 2016. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1573 / 1592
页数:20
相关论文
共 50 条
  • [21] Cortical stimulation parameters for functional mapping
    Corley, Jacquelyn A.
    Nazari, Pouya
    Rossi, Vincent J.
    Kim, Nora C.
    Fogg, Louis F.
    Hoeppner, Thomas J.
    Stoub, Travis R.
    Byrne, Richard W.
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 45 : 36 - 41
  • [22] Functional Parcellation of Human Brain Using Localized Topo-Connectivity Mapping
    Zhao, Yu
    Gao, Yurui
    Li, Muwei
    Anderson, Adam W.
    Ding, Zhaohua
    Gore, John C.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2670 - 2680
  • [23] A revised view of sensory cortical parcellation
    Wallace, MT
    Ramachandran, R
    Stein, BE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) : 2167 - 2172
  • [24] Longitudinally-Consistent Parcellation of Infant Population Cortical Surfaces Based on Functional Connectivity
    Yan, Junyi
    Meng, Yu
    Li, Gang
    Lin, Weili
    Zhao, Dazhe
    Shen, Dinggang
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 194 - 202
  • [25] Cortical Sulcal Atlas Construction Using a Diffeomorphic Mapping Approach
    Joshi, Shantanu H.
    Cabeen, Ryan P.
    Sun, Bo
    Joshi, Anand A.
    Gutman, Boris
    Zamanyan, Alen
    Chakrapani, Shruthi
    Dinov, Ivo
    Woods, Roger P.
    Toga, Arthur W.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 357 - +
  • [26] Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex
    Li, Yu
    Liu, Aiping
    Fu, Xueyang
    Mckeown, Martin J.
    Wang, Z. Jane
    Chen, Xun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [27] Joint Reconstruction and Parcellation of Cortical Surfaces
    Rickmann, Anne-Marie
    Bongratz, Fabian
    Poelsterl, Sebastian
    Sarasua, Ignacio
    Wachinger, Christian
    MACHINE LEARNING IN CLINICAL NEUROIMAGING, MLCN 2022, 2022, 13596 : 3 - 12
  • [28] Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI
    Park, Hae-Jeong
    Kim, Jae Jin
    Lee, Seung-Koo
    Seok, Jeong Ho
    Chun, Jiwon
    Kim, Dong Ik
    Lee, Jong Doo
    HUMAN BRAIN MAPPING, 2008, 29 (05) : 503 - 516
  • [29] Clustering the cortical laminae: in vivo parcellation
    Ittai Shamir
    Yaniv Assaf
    Ron Shamir
    Brain Structure and Function, 2024, 229 : 443 - 458
  • [30] Unsupervised fetal cortical surface parcellation
    Dahdouh, Sonia
    Limperopoulos, Catherine
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784