Extremal Interpolation of Convex Scattered Data in R3 Using Tensor Product Bezier Surfaces

被引:0
|
作者
Vlachkova, Krassimira [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
关键词
D O I
10.1007/978-3-319-26520-9_49
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of extremal interpolation of convex scattered data in R-3 and propose a feasible solution. Using our previous work on edge convex minimum L-p-norm interpolation curve networks, 1 < p <= infinity, we construct a bivariate interpolant F with the following properties: (i) F is G(1)-continuous; (ii) F consists of tensor product Bezier surfaces (patches) of degree (n, n) where n is an element of N, n >= 4, is priorly chosen; (iii) The boundary curves of each patch are convex; (iv) Each B ezier patch satisfies the tetra-harmonic equation Delta F-4 = 0. Hence F is an extremum to the corresponding energy functional.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 36 条
  • [21] FOURIER-TRANSFORMS OF SURFACE-AREA MEASURE ON CONVEX SURFACES IN R3
    BAK, JG
    MCMICHAEL, D
    VANCE, J
    WAINGER, S
    AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (04) : 633 - 668
  • [22] Convex preserving scattered data interpolation using bivariate C1 cubic splines
    Lai, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 249 - 258
  • [23] C-1 positivity preserving scattered data interpolation using rational Bernstein-Bezier triangular patch
    Hussain, Malik Zawwar
    Hussain, Maria
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 35 (1-2) : 281 - 293
  • [24] Mean convex properly embedded [φ, (e)over-right-arrow3]-minimal surfaces in R3
    Martinez, Antonio
    Martinez-Trivino, Antonio Luis
    dos Santos, Joao Paulo
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (04) : 1349 - 1370
  • [25] Complete proper minimal surfaces in convex bodies of R3, II.: The behavior of the limit set
    Martin, Francisco
    Morales, Santiago
    COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) : 699 - 725
  • [26] INTERPOLATION OF CONVEX SCATTERED DATA IN R(3) BASED UPON A CONVEX MINIMUM L(P)-NORM NETWORK, 1-LESS-THAN-P-LESS-THAN-OR-EQUAL-TO-INFINITY
    VLACHKOVA, K
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (12): : 13 - 15
  • [27] Multivariate Hermite interpolation on scattered point sets using tensor-product expo-rational B-splines
    Dechevsky, Lubomir T.
    Bang, Borre
    Laksa, Arne
    Zanaty, Peter
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
  • [28] FITTING SCATTERED DATA ON SPHERE-LIKE SURFACES USING TENSOR-PRODUCTS OF TRIGONOMETRIC AND POLYNOMIAL SPLINES
    SCHUMAKER, LL
    TRAAS, C
    NUMERISCHE MATHEMATIK, 1991, 60 (01) : 133 - 144
  • [29] "Mean convex properly embedded [9, eE31-minimal surfaces in R3"(vol 38, pg 1349, 2022)
    Martinez, Antonio
    Martinez-Trivino, Antonio Luis
    dos Santos, Joao Paulo
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 399 - 401
  • [30] Fitting smooth surfaces to scattered 3D data using piecewise quadratic approximation
    van Kaick, OM
    da Silva, MVG
    Schwartz, WR
    Pedrini, H
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 493 - 496