Extremal Interpolation of Convex Scattered Data in R3 Using Tensor Product Bezier Surfaces

被引:0
|
作者
Vlachkova, Krassimira [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
关键词
D O I
10.1007/978-3-319-26520-9_49
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of extremal interpolation of convex scattered data in R-3 and propose a feasible solution. Using our previous work on edge convex minimum L-p-norm interpolation curve networks, 1 < p <= infinity, we construct a bivariate interpolant F with the following properties: (i) F is G(1)-continuous; (ii) F consists of tensor product Bezier surfaces (patches) of degree (n, n) where n is an element of N, n >= 4, is priorly chosen; (iii) The boundary curves of each patch are convex; (iv) Each B ezier patch satisfies the tetra-harmonic equation Delta F-4 = 0. Hence F is an extremum to the corresponding energy functional.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 36 条