A consistent bootstrap procedure for the maximum score estimator

被引:12
|
作者
Patra, Rohit Kumar [1 ]
Seijo, Emilio [2 ]
Sen, Bodhisattva [2 ]
机构
[1] Univ Florida, Dept Stat, 221 Griffin Floyd Hall, Gainesville, FL 32611 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Binary choice model; Cube-root asymptotics; (In)-consistency of the bootstrap; Latent variable model; Smoothed bootstrap; RANK CORRELATION ESTIMATOR; CUBE ROOT ASYMPTOTICS; SEMIPARAMETRIC ESTIMATION; NONPARAMETRIC REGRESSION; UNIFORM; MODELS; CHOICE; RATES; CONVERGENCE;
D O I
10.1016/j.jeconom.2018.04.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we propose a new model-based smoothed bootstrap procedure for making inference on the maximum score estimator of Manski (1975, 1985) and prove its consistency. We provide a set of sufficient conditions for the consistency of any bootstrap procedure in this problem. We compare the finite sample performance of different bootstrap procedures through simulation studies. The results indicate that our proposed smoothed bootstrap outperforms other bootstrap schemes, including the m-out-of-n bootstrap. Additionally, we prove a convergence theorem for triangular arrays of random variables arising from binary choice models, which may be of independent interest. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 507
页数:20
相关论文
共 50 条