Super W1+∞ n-Algebra in the Supersymmetric Landau Problem

被引:0
|
作者
Zhang, Chun-Hong [1 ]
Ding, Lu [2 ]
Yan, Zhao-Wen [3 ]
Wu, Ke [1 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
conformal and W symmetry; n-algebra; supersymmetric Landau problem; W-INFINITY-ALGEBRA; SYSTEM; LIE;
D O I
10.1088/0253-6102/67/6/648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the super n-bracket built from associative operator products. Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity, we deal with the n odd case and give the generalized super Bremner identity. For the infinite conserved operators in the supersymmetric Landau problem, we derive the super W1+infinity n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases, respectively. Moreover the super W1+infinity sub-2n-algebra is also given.
引用
收藏
页码:648 / 654
页数:7
相关论文
共 50 条
  • [1] Super W1+∞ n-Algebra in the Supersymmetric Landau Problem
    张春红
    丁璐
    颜昭雯
    吴可
    赵伟忠
    [J]. Communications in Theoretical Physics, 2017, 67 (06) : 648 - 654
  • [2] A Realization of the W1+∞ Algebra and Its n-Algebra
    张春红
    王蕊
    吴可
    赵伟忠
    [J]. Chinese Physics Letters, 2017, 34 (08) : 13 - 17
  • [3] THE SUPER W1+∞ ALGEBRA WITH INTEGRAL CENTRAL CHARGE
    Creutzig, Thomas
    Linshaw, Andrew R.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (08) : 5521 - 5551
  • [4] A Realization of the W1+∞ Algebra and Its n- Algebra
    Zhang, Chun-Hong
    Wang, Rui
    Wu, Ke
    Zhao, Wei-Zhong
    [J]. CHINESE PHYSICS LETTERS, 2017, 34 (08)
  • [5] A (q, γ) analog of the W1+∞ algebra
    Miki, Kei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
  • [6] Highest weight modules over the W1+∞ algebra and the bispectral problem
    Bakalov, B
    Horozov, E
    Yakimov, M
    [J]. DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) : 41 - 72
  • [7] The matrix-extended W1+∞ algebra
    Eberhardt, Lorenz
    Prochazka, Tomas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, (12):
  • [8] The N=1 supersymmetric Landau problem and its supersymmetric Landau level projections: the N=1 supersymmetric Moyal-Voros superplane
    Ben Geloun, Joseph
    Govaerts, Jan
    Scholtz, Frederik G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
  • [9] Representations of the associated Lie conformal algebra of the W1+? algebra and beyond
    Xia, Chunguang
    [J]. JOURNAL OF ALGEBRA, 2023, 622 : 69 - 97
  • [10] The N=2 supersymmetric w1+∞ symmetry in the two-dimensional SYK models
    Ahn, Changhyun
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, (05):