HIDDEN VARIABLE RECURRENT FRACTAL INTERPOLATION FUNCTIONS WITH FUNCTION CONTRACTIVITY FACTORS

被引:6
|
作者
Yun, Chol-Hui [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Recurrent Iterated Function System; Recurrent Fractal Interpolation Function; Hidden Variable Fractal Interpolation Function; Hidden Variable Recurrent Fractal Interpolation Function; Function Contractivity Factor; SURFACES; CONSTRUCTION;
D O I
10.1142/S0218348X19501135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a construction of hidden variable recurrent fractal interpolation functions (HVRFIFs) with four function contractivity factors. The HVRFIF is a hidden variable fractal interpolation function (HVFIF) constructed using a recurrent iterated function system (RIFS). In the fractal interpolation theory, it is very important to ensure flexibility and diversity of the construction of interpolation functions. RIFSs produce fractal sets with local self-similarity structure. Therefore, the RIFS can describe the irregular and complicated objects in nature better than the iterated function system (IFS). The HVFIF is neither self-similar nor self-affine one. Hence, the HVFIF is more complicated, diverse and irregular than the fractal interpolation function (FIF). The contractivity factors of IFS are very important one that determines characteristics of FIFs. The IFS and RIFS with function contractivity factors can describe the fractal objects in nature better than one with constant contractivity factors. To ensure higher flexibility and diversity of the construction of the FIFs, we present constructions of one variable HVRFIFs and bivariable HVRFIFs using RIFS with four function contractivity factors.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73
  • [32] On the stability of Fractal interpolation functions with variable parameters
    Attia, Najmeddine
    Saidi, Neji
    Amami, Rim
    Amami, Rimah
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 2908 - 2924
  • [33] Some Results on Recurrent Fractal Interpolation Function
    Al-Shameri, Wadia Faid Hassan
    [J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2020, 12 (08) : 1038 - 1043
  • [34] SMOOTHNESS OF COALESCENCE HIDDEN-VARIABLE FRACTAL INTERPOLATION SURFACES
    Kapoor, G. P.
    Prasad, Srijanani Anurag
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2321 - 2333
  • [35] Note on fractal interpolation function with variable parameters
    Attia, Najmeddine
    Moulahi, Taoufik
    Amami, Rim
    Saidi, Neji
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 2584 - 2601
  • [36] Riemann–Liouville calculus on quadratic fractal interpolation function with variable scaling factors
    A. Gowrisankar
    M. Guru Prem Prasad
    [J]. The Journal of Analysis, 2019, 27 : 347 - 363
  • [37] On the variable order fractional calculus of fractal interpolation functions
    R. Valarmathi
    A. Gowrisankar
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 1273 - 1293
  • [38] On the variable order fractional calculus of fractal interpolation functions
    Valarmathi, R.
    Gowrisankar, A.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (03) : 1273 - 1293
  • [39] Fractal interpolation functions with variable parameters and their analytical properties
    Wang, Hong-Yong
    Yu, Jia-Shan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 175 : 1 - 18
  • [40] Explicitly defined fractal interpolation functions with variable parameters
    Serpa, Cristina
    Buescu, Jorge
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 75 : 76 - 83