CPU-GPU hybrid computing for feature extraction from video stream

被引:5
|
作者
Lee, Sungju [1 ]
Kim, Heegon [1 ]
Park, Daihee [1 ]
Chung, Yongwha [1 ]
Jeong, Taikyeong [2 ]
机构
[1] Korea Univ, Dept Comp & Informat Sci, Sejong, South Korea
[2] Seoul Womens Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 22期
关键词
CPU; GPU; heterogeneous computing; feature extraction;
D O I
10.1587/elex.11.20140932
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a way to distribute the video analytics workload into both the CPU and GPU, with a performance prediction model including characteristics of feature extraction from the video stream data. That is, we estimate the total execution time of a CPU-GPU hybrid computing system with the performance prediction model, and determine the optimal workload ratio and how to use the CPU cores for the given workload. Based on experimental results, we confirm that our proposed method can improve the speedups of three typical workload distributions: CPU-only, GPU-only, or CPU-GPU hybrid computing with a 50:50 workload ratio.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Exploration on Task Scheduling Strategy for CPU-GPU Heterogeneous Computing System
    Fang, Juan
    Zhang, Jiaxing
    Lu, Shuaibing
    Zhao, Hui
    [J]. 2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 306 - 311
  • [42] Application of hybrid CPU-GPU computing platform in large-scale geotechnical finite element analysis
    Beijing Jiaotong University, Beijing
    100044, China
    [J]. Tumu Gongcheng Xuebao, 6 (105-112):
  • [43] A Hybrid B plus -tree as Solution for In-Memory Indexing on CPU-GPU Heterogeneous Computing Platforms
    Shahvarani, Amirhesam
    Jacobsen, Hans-Arno
    [J]. SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, : 1523 - 1538
  • [44] Securing AI Inference in the Cloud: Is CPU-GPU Confidential Computing Ready?
    Mohan, Apoorve
    Ye, Mengmei
    Franke, Hubertus
    Srivatsa, Mudhakar
    Liu, Zhuoran
    Gonzalez, Nelson Mimura
    [J]. 2024 IEEE 17TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, CLOUD 2024, 2024, : 164 - 175
  • [45] Supporting Energy-Efficient Computing on Heterogeneous CPU-GPU Architectures
    Siehl, Kyle
    Zhao, Xinghui
    [J]. 2017 IEEE 5TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2017), 2017, : 134 - 141
  • [46] A comparison of Algebraic Multigrid Bidomain solvers on hybrid CPU-GPU architectures
    Centofanti, Edoardo
    Scacchi, Simone
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 423
  • [47] Hybrid CPU-GPU constraint checking: Towards efficient context consistency
    Sui, Jun
    Xu, Chang
    Cheung, S. C.
    Xi, Wang
    Jiang, Yanyan
    Cao, Chun
    Ma, Xiaoxing
    Lu, Jian
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2016, 74 : 230 - 242
  • [48] Hybrid CPU-GPU execution support in the skeleton programming framework SkePU
    Ohberg, Tomas
    Ernstsson, August
    Kessler, Christoph
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (07): : 5038 - 5056
  • [49] Efficient irregular wavefront propagation algorithms on hybrid CPU-GPU machines
    Teodoro, George
    Pan, Tony
    Kurc, Tahsin M.
    Kong, Jun
    Cooper, Lee A. D.
    Saltz, Joel H.
    [J]. PARALLEL COMPUTING, 2013, 39 (4-5) : 189 - 211
  • [50] Improving Dense Linear Equation Solver on Hybrid CPU-GPU System
    Cao, Zhichao
    Xu, Shiming
    Xue, Wei
    Chen, Wenguang
    [J]. 2009 10TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS, AND NETWORKS (ISPAN 2009), 2009, : 556 - +