CPU-GPU hybrid computing for feature extraction from video stream

被引:5
|
作者
Lee, Sungju [1 ]
Kim, Heegon [1 ]
Park, Daihee [1 ]
Chung, Yongwha [1 ]
Jeong, Taikyeong [2 ]
机构
[1] Korea Univ, Dept Comp & Informat Sci, Sejong, South Korea
[2] Seoul Womens Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 22期
关键词
CPU; GPU; heterogeneous computing; feature extraction;
D O I
10.1587/elex.11.20140932
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a way to distribute the video analytics workload into both the CPU and GPU, with a performance prediction model including characteristics of feature extraction from the video stream data. That is, we estimate the total execution time of a CPU-GPU hybrid computing system with the performance prediction model, and determine the optimal workload ratio and how to use the CPU cores for the given workload. Based on experimental results, we confirm that our proposed method can improve the speedups of three typical workload distributions: CPU-only, GPU-only, or CPU-GPU hybrid computing with a 50:50 workload ratio.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Boosting CUDA Applications with CPU-GPU Hybrid Computing
    Lee, Changmin
    Ro, Won Woo
    Gaudiot, Jean-Luc
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2014, 42 (02) : 384 - 404
  • [2] A hybrid computing method of SpMV on CPU-GPU heterogeneous computing systems
    Yang, Wangdong
    Li, Kenli
    Li, Keqin
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 104 : 49 - 60
  • [3] Algorithm for Cooperative CPU-GPU Computing
    Aciu, Razvan-Mihai
    Ciocarlie, Horia
    [J]. 2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 352 - 358
  • [4] Simeuro: A Hybrid CPU-GPU Parallel Simulator for Neuromorphic Computing Chips
    Zhang, Huaipeng
    Ho, Nhut-Minh
    Polat, Dogukan Yigit
    Chen, Peng
    Wahib, Mohamed
    Nguyen, Truong Thao
    Meng, Jintao
    Goh, Rick Siow Mong
    Matsuoka, Satoshi
    Luo, Tao
    Wong, Weng-Fai
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (10) : 2767 - 2782
  • [5] A survey on techniques for cooperative CPU-GPU computing
    Raju, K.
    Chiplunkar, Niranjan N.
    [J]. SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2018, 19 : 72 - 85
  • [6] A Survey of CPU-GPU Heterogeneous Computing Techniques
    Mittal, Sparsh
    Vetter, Jeffrey S.
    [J]. ACM COMPUTING SURVEYS, 2015, 47 (04)
  • [7] Architecture for Fast Object Detection Supporting CPU-GPU Hybrid and Distributed Computing
    Bae, Yuseok
    Park, Jongyoul
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2017,
  • [8] A CPU-GPU HYBRID COMPUTING FRAMEWORK FOR REAL-TIME CLOTHING ANIMATION
    Li, Hanwen
    Wan, Yi
    Ma, Guanghui
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS, 2011, : 391 - 396
  • [9] A Efficient Algorithm for Molecular Dynamics Simulation on Hybrid CPU-GPU Computing Platforms
    Li, Dapu
    Ai, Wei
    Ye, Yu
    Liang, Jie
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1357 - 1363
  • [10] HybridHadoop: CPU-GPU Hybrid Scheduling in Hadoop
    Oh, Chanyoung
    Jung, Hyeonjin
    Yi, Saehanseul
    Yoon, Illo
    Yi, Youngmin
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION (HPC ASIA 2021), 2020, : 40 - 49