An Intelligent Instrument Reader: Using Computer Vision and Machine Learning to Automate Meter Reading

被引:6
|
作者
Sowah, Robert A. [1 ]
Ofoli, Abdul R. [2 ]
Mensah-Ananoo, Eugene [1 ]
Mills, Godfrey A. [1 ]
Koumadi, Koudjo M. M. [1 ]
机构
[1] Univ Ghana, Legon 00233, Accra, Ghana
[2] Univ Tennessee, Chattanooga, TN 37403 USA
关键词
Meters; Training; Feature extraction; Face recognition; Cameras; Shape; Machine learning algorithms;
D O I
10.1109/MIAS.2021.3063082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel algorithm using computer vision and machine learning techniques has been developed in this research and applied to automate the reading of analog meters. This approach does not rely on any prior information about the meter being read or any human intervention during the process. High-level features of the meter, including the graduation values and angles, are extracted using a cascade of image contour filters with a series of digit classifiers. The features are refined and used to train regression models that return the reading of the analog meter automatically.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [31] Deep learning to automate the labelling of head MRI datasets for computer vision applications
    David A. Wood
    Sina Kafiabadi
    Aisha Al Busaidi
    Emily L. Guilhem
    Jeremy Lynch
    Matthew K. Townend
    Antanas Montvila
    Martin Kiik
    Juveria Siddiqui
    Naveen Gadapa
    Matthew D. Benger
    Asif Mazumder
    Gareth Barker
    Sebastian Ourselin
    James H. Cole
    Thomas C. Booth
    European Radiology, 2022, 32 : 725 - 736
  • [32] Deep learning to automate the labelling of head MRI datasets for computer vision applications
    Wood, David A.
    Kafiabadi, Sina
    Al Busaidi, Aisha
    Guilhem, Emily L.
    Lynch, Jeremy
    Townend, Matthew K.
    Montvila, Antanas
    Kiik, Martin
    Siddiqui, Juveria
    Gadapa, Naveen
    Benger, Matthew D.
    Mazumder, Asif
    Barker, Gareth
    Ourselin, Sebastian
    Cole, James H.
    Booth, Thomas C.
    EUROPEAN RADIOLOGY, 2022, 32 (01) : 725 - 736
  • [33] Research on Intelligent Instrument Character Location Technology Based on Computer Vision
    Zhang, Qinghui
    Wan, Chenxia
    Bian, Shanfeng
    Qin, Shuying
    2018 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2018, : 112 - 116
  • [34] Goat Leather Quality Classification Using Computer Vision and Machine Learning
    Pereira, Renato F.
    Medeiros, Claudio M. S.
    Reboucas Filho, Pedro P.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [35] A Detective and Corrective Exercise Assistant using Computer Vision and Machine Learning
    Grewe, Lynne
    Pham, Dung Nu Thanh
    Jain, Dikshant Pravin
    Mahajan, Ankush
    Shahshahani, Allen
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXI, 2022, 12122
  • [36] Realtime Indoor Workout Analysis Using Machine Learning & Computer Vision
    Nagarkoti, Amit
    Teotia, Revant
    Mahale, Amith K.
    Das, Pankaj K.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1440 - 1443
  • [37] Rapid screening of mayonnaise quality using computer vision and machine learning
    Jorge Metri-Ojeda
    Gabriel Solana-Lavalle
    Roberto Rosas-Romero
    Enrique Palou
    Diana Milena-Ramírez-Rodrigues
    Journal of Food Measurement and Characterization, 2023, 17 : 2792 - 2804
  • [38] Widget detection on screenshots using computer vision and machine learning algorithms
    Radzikowski, Kacper
    Checinski, Karol
    Forc, Mateusz
    Lepak, Lukasz
    Joblonski, Michal
    Kusmirek, Wiktor
    Twardowski, Bartlomiej
    Wawrzynski, Pawel
    Nowak, Robert M.
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2019, 2019, 11176
  • [39] Otoscopic diagnosis using computer vision: An automated machine learning approach
    Livingstone, Devon
    Chau, Justin
    LARYNGOSCOPE, 2020, 130 (06): : 1408 - 1413
  • [40] Driver-Assistant System Using Computer Vision and Machine Learning
    Valencia-Payan, Cristian
    Munoz-Ordonez, Julian
    Pencue-Fierro, Leonairo
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2020, 29 (54):