Incremental Semi-Supervised Clustering Ensemble for High Dimensional Data Clustering

被引:142
|
作者
Yu, Zhiwen [1 ]
Luo, Peinan [1 ]
You, Jane [2 ]
Wong, Hau-San [3 ]
Leung, Hareton [2 ]
Wu, Si [1 ]
Zhang, Jun [4 ]
Han, Guoqiang [1 ]
机构
[1] S China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[4] Sun Yat Sen Univ, Sch Adv Comp, Guangzhou 510275, Guangdong, Peoples R China
关键词
Cluster ensemble; semi-supervised clustering; random subspace; cancer gene expression profile; clustering analysis; CLASS DISCOVERY; CONSENSUS; FRAMEWORK;
D O I
10.1109/TKDE.2015.2499200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional cluster ensemble approaches have three limitations: (1) They do not make use of prior knowledge of the datasets given by experts. (2) Most of the conventional cluster ensemble methods cannot obtain satisfactory results when handling high dimensional data. (3) All the ensemble members are considered, even the ones without positive contributions. In order to address the limitations of conventional cluster ensemble approaches, we first propose an incremental semi-supervised clustering ensemble framework (ISSCE) which makes use of the advantage of the random subspace technique, the constraint propagation approach, the proposed incremental ensemble member selection process, and the normalized cut algorithm to perform high dimensional data clustering. The random subspace technique is effective for handling high dimensional data, while the constraint propagation approach is useful for incorporating prior knowledge. The incremental ensemble member selection process is newly designed to judiciously remove redundant ensemble members based on a newly proposed local cost function and a global cost function, and the normalized cut algorithm is adopted to serve as the consensus function for providing more stable, robust, and accurate results. Then, a measure is proposed to quantify the similarity between two sets of attributes, and is used for computing the local cost function in ISSCE. Next, we analyze the time complexity of ISSCE theoretically. Finally, a set of nonparametric tests are adopted to compare multiple semi-supervised clustering ensemble approaches over different datasets. The experiments on 18 real-world datasets, which include six UCI datasets and 12 cancer gene expression profiles, confirm that ISSCE works well on datasets with very high dimensionality, and outperforms the state-of-the-art semi-supervised clustering ensemble approaches.
引用
收藏
页码:701 / 714
页数:14
相关论文
共 50 条
  • [31] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [32] A review on semi-supervised clustering
    Cai, Jianghui
    Hao, Jing
    Yang, Haifeng
    Zhao, Xujun
    Yang, Yuqing
    INFORMATION SCIENCES, 2023, 632 : 164 - 200
  • [33] Semi-Supervised Clustering for Sparsely Sampled Longitudinal Data
    Takagishi, Mariko
    Yadohisa, Hiroshi
    COMPLEX ADAPTIVE SYSTEMS, 2015, 2015, 61 : 18 - 23
  • [34] A semi-supervised clustering approach using labeled data
    Taghizabet, A.
    Tanha, J.
    Amini, A.
    Mohammadzadeh, J.
    SCIENTIA IRANICA, 2023, 30 (01) : 104 - 115
  • [35] Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification
    Yu, Zhiwen
    Zhang, Yidong
    You, Jane
    Chen, C. L. Philip
    Wong, Hau-San
    Han, Guoqiang
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (02) : 366 - 379
  • [36] Semi-supervised classifier ensemble model for high-dimensional data
    Niu, Xufeng
    Ma, Wenping
    INFORMATION SCIENCES, 2023, 643
  • [37] Eigenvectors selection for spectral clustering based on semi-supervised selective ensemble
    Wang, X. (wangxingliang0911@163.com), 1600, Binary Information Press (10):
  • [38] A Kernel Probabilistic Model for Semi-supervised Co-clustering Ensemble
    Zhang, Yinghui
    JOURNAL OF INTELLIGENT SYSTEMS, 2020, 29 (01) : 143 - 153
  • [39] Semi-Supervised Selective Affinity Propagation Ensemble Clustering With Active Constraints
    Lei, Qi
    Li, Ting
    IEEE ACCESS, 2020, 8 : 46255 - 46266
  • [40] Semi-supervised clustering with soft labels
    Nebu, Cynthia Marea
    Joseph, Sumy
    2015 INTERNATIONAL CONFERENCE ON CONTROL COMMUNICATION & COMPUTING INDIA (ICCC), 2015, : 612 - 616