A Hilbert Boundary Value Problem for Generalised Cauchy-Riemann Equations

被引:0
|
作者
Alsaedy, Ammar [1 ,2 ]
Tarkhanov, Nikolai [2 ]
机构
[1] Alnahrain Univ, Dept Math, Coll Sci, Baghdad, Iraq
[2] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Golm, Germany
关键词
Dirac operator; Clifford algebra; Riemann-Hilbert problem; Fredholm operators;
D O I
10.1007/s00006-016-0676-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed problems, and construct an explicit formula for approximate solutions.
引用
收藏
页码:931 / 953
页数:23
相关论文
共 50 条