Catalytic performance and mechanism of N-CoTi@CoTiO3 catalysts for oxygen reduction reaction

被引:32
|
作者
An, Li [1 ]
Yan, Huijun [1 ]
Chen, Xin [1 ]
Li, Biao [1 ]
Xia, Zhonghong [1 ]
Xia, Dingguo [1 ]
机构
[1] Peking Univ, Coll Engn, Key Lab Theory & Technol Adv Batteries Mat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
N-CoTi@CoTiO3; Oxygen reduction reaction; Electrocatalyst; Surface polarization; NITROGEN-DOPED CARBON; METAL-FREE ELECTROCATALYSTS; FACILE SYNTHESIS; PLATINUM; NANOPARTICLES; GRAPHENE; POLYANILINE; NANOSPHERES; STABILITY; AUCU3;
D O I
10.1016/j.nanoen.2015.12.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alternative non-precious metal catalysts with comparable oxygen reduction reaction activity and durability to Pt-based catalysts are highly desirable for the development of fuel cell. Herein, we report a novel and efficient non-precious electrocatalyst N-CoTi@CoTiO3/C featuring an unusual composite oxide layer on the surface of CoTi alloy nanoparticles, which was investigated using probe-corrected scanning transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory calculations. The N-CoTi@CoTiO3/C catalyst shows superior catalytic performance for oxygen reduction reactions (ORR) in alkaline solutions, with comparable onset potential, half-wave potential to commercial Pt/C and specific activity 1.5 times as high as commercial Pt/C at 0.70 V. Theoretical calculations demonstrate that the surface oxide layer polarization effect caused by the intermetallic CoTi core plays a key role in the high ORR activity of N-CoTi@CoTiO3/C. The enhancement of ORR activity and durability of catalyst by the surface polarization provides a versatile strategy for tuning the catalytic performance of non-noble electrocatalysts. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [41] Performance of polyaniline-derived Fe-N-C catalysts for oxygen reduction reaction in alkaline electrolyte
    Yan, Xiang-Hui
    Zhang, Gui-Rong
    Xu, Bo-Qing
    CHINESE JOURNAL OF CATALYSIS, 2013, 34 (11) : 1992 - 1997
  • [42] Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction
    Wu, Xing
    Tang, Chongjian
    Cheng, Yi
    Min, Xiaobo
    Jiang, San Ping
    Wang, Shuangyin
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (18) : 3906 - 3929
  • [43] Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts
    Yahao Li
    Ketao Zang
    Xuezhi Duan
    Jun Luo
    De Chen
    Journal of Energy Chemistry , 2021, (04) : 572 - 579
  • [44] Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts
    Li, Yahao
    Zang, Ketao
    Duan, Xuezhi
    Luo, Jun
    Chen, De
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 572 - 579
  • [45] Nano-Intermetallic AuCu3 Catalyst for Oxygen Reduction Reaction: Performance and Mechanism
    Zhang, Nanlin
    Chen, Xin
    Lu, Yuanjun
    An, Li
    Li, Xiang
    Xia, Dingguo
    Zhang, Ze
    Li, Jixue
    SMALL, 2014, 10 (13) : 2662 - 2669
  • [46] Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction
    Ma, Qianli
    Jin, Huihui
    Zhu, Jiawei
    Li, Zilan
    Xu, Hanwen
    Liu, Bingshuai
    Zhang, Zhiwei
    Ma, Jingjing
    Mu, Shichun
    ADVANCED SCIENCE, 2021, 8 (23)
  • [47] N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts
    Yang, Tianyu
    Liu, Jian
    Zhou, Ruifeng
    Chen, Zhigang
    Xu, Hongyi
    Qiao, Shi Zhang
    Monteiro, Michael J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) : 18139 - 18146
  • [48] Atomically dispersed M-N-C catalysts for the oxygen reduction reaction
    Xu, Hao
    Wang, Dan
    Yang, Peixia
    Liu, Anmin
    Li, Ruopeng
    Li, Yun
    Xiao, Lihui
    Ren, Xuefeng
    Zhang, Jinqiu
    An, Maozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (44) : 23187 - 23201
  • [49] Oxygen reduction reaction mechanism of N-doped graphene nanoribbons
    Matsuyama, Haruyuki
    Gomi, Shun-ichi
    Nakamura, Jun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (04):
  • [50] Catalytic performance of Cu/Hβ catalysts for selective catalytic reduction of NO with NH3
    Sun J.-C.
    Ren C.-T.
    Zhao M.-X.
    Tian C.-Y.
    Chi Y.-L.
    Zhao T.-T.
    Wang H.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (06): : 823 - 831