Dissipation of electromagnetic waves in one-dimensional quasiperiodic media

被引:2
|
作者
Sedrakian, D. M. [1 ]
Gevorgyan, A. A.
Khachatrian, A. Zh.
Badalyan, V. D.
机构
[1] Erevan State Univ, Yerevan, Armenia
[2] State Engn Univ, Yerevan, Armenia
关键词
radiation; electromagnetic; dissipation;
D O I
10.1007/s10511-007-0010-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The transport of electromagnetic radiation through an isotropic quasiperiodic medium of finite size with linearly or exponentially varying parameters of the dielectric permittivity in one direction is studied. It is shown that quasiperiodicity of the dielectric properties leads to the formation of a forbidden band that is considerably wider than the corresponding band for ideally periodic media. Simple approximate formulas are given for the width and central wavelength of the forbidden band.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 50 条
  • [41] SCALING AND EIGENSTATES FOR A CLASS OF ONE-DIMENSIONAL QUASIPERIODIC LATTICES
    GUMBS, G
    ALI, MK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : L517 - L521
  • [42] Few particles correlation in a one-dimensional quasiperiodic lattice
    Suárez, JR
    Vallejo, E
    Carvajal, E
    Navarro, O
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (09): : 1759 - 1762
  • [43] Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
    柏小东
    薛具奎
    Chinese Physics Letters, 2015, (01) : 9 - 13
  • [44] Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
    Bai Xiao-Dong
    Xue Ju-Kui
    CHINESE PHYSICS LETTERS, 2015, 32 (01)
  • [45] Optical properties of quasiperiodic (fractals) one-dimensional structures
    Sibilia, C
    NANOSCALE LINEAR AND NONLINEAR OPTICS, 2001, 560 : 220 - 236
  • [46] Ballistic Transport for One-Dimensional Quasiperiodic Schrodinger Operators
    Ge, Lingrui
    Kachkovskiy, Ilya
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (10) : 2577 - 2612
  • [47] Wave propagation in one-dimensional optical quasiperiodic systems
    Hollingworth, JM
    Vourdas, A
    Backhouse, N
    PHYSICAL REVIEW E, 2001, 64 (03): : 7
  • [48] Anomalous mobility edges in one-dimensional quasiperiodic models
    Liu, Tong
    Xia, Xu
    Longhi, Stefano
    Sanchez-Palencia, Laurent
    SCIPOST PHYSICS, 2022, 12 (01):
  • [49] One-dimensional quasiperiodic tilings admitting progressions enclosure
    V. V. Krasil’shchikov
    A. V. Shutov
    V. G. Zhuravlev
    Russian Mathematics, 2009, 53 (7) : 1 - 6
  • [50] One-Dimensional Quasiperiodic Tilings Admitting Progressions Enclosure
    Krasil'shchikov, V. V.
    Shutov, A. V.
    Zhuravlev, V. G.
    RUSSIAN MATHEMATICS, 2009, 53 (07) : 1 - 6