Probing the quantum-classical boundary with compression software

被引:8
|
作者
Poh, Hou Shun [1 ]
Markiewicz, Marcin [2 ]
Kurzynski, Pawel [1 ,3 ]
Cere, Alessandro [1 ]
Kaszlikowski, Dagomir [1 ,4 ]
Kurtsiefer, Christian [1 ,4 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Jagiellonian Univ, Inst Phys, Ul Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Adam Mickiewicz Univ, Fac Phys, Umultowska 85, PL-61614 Poznan, Poland
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
新加坡国家研究基金会;
关键词
Kolmogorov complexity; quantum correlations; description of reality; Turingmachine; INFORMATION;
D O I
10.1088/1367-2630/18/3/035011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Weadapt an algorithmic approach to the problem of local realism in a bipartite scenario. We assume that local outcomes are simulated by spatially separated universal Turing machines. The outcomes are calculated from inputs encoding information about a local measurement setting and a description of the bipartite system sent to both parties. In general, such a description can encode some additional information not available in quantum theory, i.e., local hidden variables. Using the Kolmogorov complexity of local outcomes we derive an inequality that must be obeyed by any local realistic theory. Since the Kolmogorov complexity is in general uncomputable, we show that this inequality can be expressed in terms of lossless compression of the data generated in such experiments and that quantum mechanics violates it. Finally, we confirm experimentally our findings using pairs of polarisation-entangled photons and readily available compression software. We argue that our approach relaxes the independent and identically distributed (i.i.d.) assumption, namely that individual bits in the outcome bit-strings do not have to be i.i.d.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] SHARC meets TEQUILA: mixed quantum-classical dynamics on a quantum computer using a hybrid quantum-classical algorithm
    Sangiogo Gil, Eduarda
    Oppel, Markus
    Kottmann, Jakob S.
    González, Leticia
    Chemical Science, 2024, 16 (02) : 596 - 609
  • [42] Classicalization of quantum variables and quantum-classical hybrids
    Koide, T.
    PHYSICS LETTERS A, 2015, 379 (36) : 2007 - 2012
  • [43] Quantum-classical hybrid quantum superdense coding
    Yang, Wei
    Huang, Liusheng
    Liu, An
    Tian, Miaomiao
    Miao, Haibo
    PHYSICA SCRIPTA, 2013, 88 (01)
  • [44] Quantum dynamics in open quantum-classical systems
    Kapral, Raymond
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (07)
  • [45] Hybrid quantum-classical model of quantum measurements
    Buric, N.
    Popovic, D. B.
    Radonjic, M.
    Prvanovic, S.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [46] Davydov model: The quantum, mixed quantum-classical, and full classical systems
    CruzeiroHansson, L
    Takeno, S
    PHYSICAL REVIEW E, 1997, 56 (01) : 894 - 906
  • [47] Prerelaxation in quantum, classical, and quantum-classical two-impurity models
    Elbracht, Michael
    Potthoff, Michael
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [48] Statistical consistency of quantum-classical hybrids
    Salcedo, L. L.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [49] Quantum-Classical Correspondence of Shortcuts to Adiabaticity
    Okuyama, Manaka
    Takahashi, Kazutaka
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (04)
  • [50] The Boltzmann distribution and the quantum-classical correspondence
    Alterman, Sam
    Choi, Jaeho
    Durst, Rebecca
    Fleming, Sarah M.
    Wootters, William K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (34)