Probing the quantum-classical boundary with compression software

被引:8
|
作者
Poh, Hou Shun [1 ]
Markiewicz, Marcin [2 ]
Kurzynski, Pawel [1 ,3 ]
Cere, Alessandro [1 ]
Kaszlikowski, Dagomir [1 ,4 ]
Kurtsiefer, Christian [1 ,4 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Jagiellonian Univ, Inst Phys, Ul Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Adam Mickiewicz Univ, Fac Phys, Umultowska 85, PL-61614 Poznan, Poland
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
新加坡国家研究基金会;
关键词
Kolmogorov complexity; quantum correlations; description of reality; Turingmachine; INFORMATION;
D O I
10.1088/1367-2630/18/3/035011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Weadapt an algorithmic approach to the problem of local realism in a bipartite scenario. We assume that local outcomes are simulated by spatially separated universal Turing machines. The outcomes are calculated from inputs encoding information about a local measurement setting and a description of the bipartite system sent to both parties. In general, such a description can encode some additional information not available in quantum theory, i.e., local hidden variables. Using the Kolmogorov complexity of local outcomes we derive an inequality that must be obeyed by any local realistic theory. Since the Kolmogorov complexity is in general uncomputable, we show that this inequality can be expressed in terms of lossless compression of the data generated in such experiments and that quantum mechanics violates it. Finally, we confirm experimentally our findings using pairs of polarisation-entangled photons and readily available compression software. We argue that our approach relaxes the independent and identically distributed (i.i.d.) assumption, namely that individual bits in the outcome bit-strings do not have to be i.i.d.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The Quantum-Classical Boundary
    Brandt, Howard E.
    QUANTUM INFORMATION AND COMPUTATION XI, 2013, 8749
  • [2] EXPLORING QUANTUM-CLASSICAL BOUNDARY
    Ohmori, Kenji
    PROCEEDINGS OF THE 240 CONFERENCE: SCIENCE'S GREAT CHALLENGES, 2015, 157 : 19 - 24
  • [3] Probing the quantum-classical connection with open quantum dots
    Ferry, D. K.
    Akis, R.
    Brunner, R.
    PHYSICA SCRIPTA, 2015, T165
  • [4] A complementarity experiment with an interferometer at the quantum-classical boundary
    Bertet, P
    Osnaghi, S
    Rauschenbeutel, A
    Nogues, G
    Auffeves, A
    Brune, M
    Raimond, JM
    Haroche, S
    NATURE, 2001, 411 (6834) : 166 - 170
  • [5] Analysing a complementarity experiment on the quantum-classical boundary
    Terra Cunha, M.O.
    Nemes, M.C.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 305 (06): : 313 - 321
  • [6] Quantum-classical duality for Gaudin magnets with boundary
    Vasilyev, M.
    Zabrodin, A.
    Zotov, A.
    NUCLEAR PHYSICS B, 2020, 952
  • [7] Edge states and trajectories in quantum dots: Probing the quantum-classical transition
    Ferry, D. K.
    Akis, R.
    Bird, J. P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1278 - 1287
  • [8] Computational quantum-classical boundary of noisy commuting quantum circuits
    Fujii, Keisuke
    Tamate, Shuhei
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Computational quantum-classical boundary of noisy commuting quantum circuits
    Keisuke Fujii
    Shuhei Tamate
    Scientific Reports, 6
  • [10] Developing hybrid quantum-classical software: a software product line approach
    Sepulveda, Samuel
    Piattini, Mario
    Perez-Castillo, Ricardo
    PROCEEDINGS OF THE 2024 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON QUANTUM SOFTWARE ENGINEERING, Q-SE 2024, 2024, : 37 - 40