Mapping Roads in the Brazilian Amazon with Artificial Intelligence and Sentinel-2

被引:16
|
作者
Botelho Jr, Jonas [1 ]
Costa, Stefany C. P. [1 ]
Ribeiro, Julia G. [1 ]
Souza Jr, Carlos M. [1 ]
机构
[1] IMAZON Amazon Inst People & Environm, BR-66055200 Belem, Para, Brazil
关键词
artificial intelligence; Amazon; road extraction; deep learning; U-Net; Sentinel-2; planetary computer; FRAGMENTATION; DEFORESTATION; NETWORKS;
D O I
10.3390/rs14153625
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents our efforts to automate the detection of unofficial roads (herein, roads) in the Brazilian Amazon using artificial intelligence (AI). In this region, roads are built by loggers, goldminers, and unauthorized land settlements from existing official roads, expanding over pristine forests and leading to new deforestation and fire hotspots. Previous research used visual interpretation, hand digitization, and vector editing techniques to create a thorough Amazon Road Dataset (ARD) from Landsat imagery. The ARD allowed assessment of the road dynamics and impacts on deforestation, landscape fragmentation, and fires and supported several scientific and societal applications. This research used the existing ARD to train and model a modified U-Net algorithm to detect rural roads in the Brazilian Amazon using Sentinel-2 imagery from 2020 in the Azure Planetary Computer platform. Moreover, we implemented a post-AI detection protocol to connect and vectorize the U-Net road detected to create a new ARD. We estimated the recall and precision accuracy using an independent ARD dataset, obtaining 65% and 71%, respectively. Visual interpretation of the road detected with the AI algorithm suggests that the accuracy is underestimated. The reference dataset does not include all roads that the AI algorithm can detect in the Sentinel-2 imagery. We found an astonishing footprint of roads in the Brazilian Legal Amazon, with 3.46 million km of roads mapped in 2020. Most roads are in private lands (similar to 55%) and 25% are in open public lands under land grabbing pressure. The roads are also expanding over forested areas with 41% cut or within 10 km from the roads, leaving 59% of the 3.1 million km(2) of the remaining original forest roadless. Our AI and post-AI models fully automated road detection in rural areas of the Brazilian Amazon, making it possible to operationalize road monitoring. We are using the AI road map to understand better rural roads' impact on new deforestation, fires, and landscape fragmentation and to support societal and policy applications for forest conservation and regional planning.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] National-Scale Detection of New Forest Roads in Sentinel-2 Time Series
    Trier, Oivind Due
    Salberg, Arnt-Borre
    REMOTE SENSING, 2024, 16 (21)
  • [42] Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy
    Xue, Jie
    Anderson, Martha C.
    Gao, Feng
    Hain, Christopher
    Yang, Yun
    Knipper, Kyle R.
    Kustas, William P.
    Yang, Yang
    REMOTE SENSING, 2021, 13 (17)
  • [43] Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence
    Saeidi, Vahideh
    Seydi, Seyd Teymoor
    Kalantar, Bahareh
    Ueda, Naonori
    Tajfirooz, Bahman
    Shabani, Farzin
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [44] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [45] Combined Use of Sentinel-1 and Sentinel-2 for Burn Severity Mapping in a Mediterranean Region
    De Luca, Giandomenico
    Silva, Joao M. N.
    Oom, Duarte
    Modica, Giuseppe
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT VII, 2021, 12955 : 139 - 154
  • [46] OVERVIEW OF SENTINEL-2
    Fernandez, Valerie
    Martimort, Philippe
    Spoto, Francois
    Sy, Omar
    Laberinti, Paolo
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XVII, 2013, 8889
  • [47] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)
  • [48] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [49] Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2
    Bartsch, Annett
    Pointner, Georg
    Ingeman-Nielsen, Thomas
    Lu, Wenjun
    REMOTE SENSING, 2020, 12 (15)
  • [50] Mapping weed infestation in maize fields using Sentinel-2 data
    Mkhize, Yoliswa
    Madonsela, Sabelo
    Cho, Moses
    Nondlazi, Basanda
    Main, Russell
    Ramoelo, Abel
    PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 134