Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery

被引:2
|
作者
Jodas, Danilo Samuel [1 ,3 ]
Pereira, Aledir Silveira [2 ]
Tavares, Joao Manuel R. S. [3 ]
机构
[1] Minist Educ Brazil, CAPES Fdn, BR-70040020 Brasilia, DF, Brazil
[2] Univ Estadual Paulista, Rua Cristovao Colombo 2265, BR-15054000 SJ Do Rio Preto, Brazil
[3] Univ Porto, Fac Engn, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal
来源
VIPIMAGE 2017 | 2018年 / 27卷
关键词
D O I
10.1007/978-3-319-68195-5_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images of carotid arteries represents a crucial step towards the evaluation of cerebrovascular diseases. However, the automatic segmentation of the lumen is still a challenge due to the usual low quality of the images and the presence of elements that compromise the accuracy of the results. In this article, we describe a fully automatic method to identify the location of the lumen in MR images of the carotid artery. A circularity index is used to assess the roundness of the regions identified by the K-means algorithm in order to obtain the one with the maximum value, i.e. the potential lumen region. Then, an active contour algorithm is employed to refine the boundary of the region found. The method achieved a maximum Dice coefficient of 0.91 +/- 0.04 and 0.74 +/- 0.16 in 181 postcontrast 3D-T1-weighted and 181 proton density-weighted MR images, respectively. Therefore, the method seems to be promising for identifying the correct location of the lumen in MR images.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 50 条
  • [21] An Enhanced Method for Automatic Detection and Segmentation of Carotid Artery in Ultrasound Images
    Licev, Lacezar
    Feberova, Karolina
    Tomecek, Jan
    Hendrych, Jakub
    COMPUTER SYSTEMS AND TECHNOLOGIES, COMPSYSTECH'16, 2016, : 206 - 213
  • [22] AUTOMATIC SEGMENTATION OF COMMON CAROTID ARTERY IN TRANSVERSE MODE ULTRASOUND IMAGES
    Kumar, J. R. Harish
    Seelamantula, Chandra Sekhar
    Narayan, Nikhil S.
    Marziliano, Pina
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 389 - 393
  • [23] Automatic segmentation of the glenohumeral cartilages from magnetic resonance images
    Neubert, A.
    Yang, Z.
    Engstrom, C.
    Xia, Y.
    Strudwick, M. W.
    Chandra, S. S.
    Fripp, J.
    Crozier, S.
    MEDICAL PHYSICS, 2016, 43 (10) : 5370 - 5379
  • [24] Automatic segmentation of articular cartilage in magnetic resonance images of the knee
    Fripp, Jurgen
    Crozier, Stuart
    Warfield, Simon K.
    Ourselin, Sebastien
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 186 - 194
  • [25] The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
    Liang, Yao-Wen
    Fang, Yu-Ting
    Lin, Ting-Chun
    Yang, Cheng-Ru
    Chang, Chih-Chang
    Chang, Hsuan-Kan
    Ko, Chin-Chu
    Tu, Tsung-Hsi
    Fay, Li-Yu
    Wu, Jau-Ching
    Huang, Wen-Cheng
    Hu, Hsiang-Wei
    Chen, You-Yin
    Kuo, Chao-Hung
    NEUROSPINE, 2024, 21 (02) : 665 - 675
  • [26] Optimizing the automatic segmentation of the left ventricle in magnetic resonance images
    Angelié, E
    de Koning, PJH
    Danilouchkine, MG
    van Assen, HC
    Koning, G
    van der Geest, RJ
    Reiber, JHC
    MEDICAL PHYSICS, 2005, 32 (02) : 369 - 375
  • [27] An algorithm for automatic segmentation and classification of magnetic resonance brain images
    Erickson, BJ
    Avula, RTV
    JOURNAL OF DIGITAL IMAGING, 1998, 11 (02) : 74 - 82
  • [28] An algorithm for automatic segmentation and classification of magnetic resonance brain images
    Bradley J. Erickson
    Ramesh T. V. Avula
    Journal of Digital Imaging, 1998, 11
  • [29] A multiresolution prostate representation for automatic segmentation in magnetic resonance images
    Alvarez, Charlens
    Martinez, Fabio
    Romero, Eduardo
    MEDICAL PHYSICS, 2017, 44 (04) : 1312 - 1323
  • [30] Automated Lumen Segmentation in Carotid Artery Ultrasound Images Based on Adaptive Generated Shape Prior
    Li, Yu
    Zou, Liwen
    Song, Jiajia
    Gong, Kailin
    BIOENGINEERING-BASEL, 2024, 11 (08):