Easing Parameter Sensitivity Analysis of Netlogo Simulations using SPARTAN

被引:1
|
作者
Alden, Kieran [1 ,2 ,3 ,4 ]
Timmis, Jon [1 ,4 ]
Coles, Mark [1 ,2 ,3 ]
机构
[1] Univ York, York Computat Immunol Lab, York, N Yorkshire, England
[2] Univ York, Hull York Med Sch, Ctr Immunol & Infect, York, N Yorkshire, England
[3] Univ York, Dept Biol, York, N Yorkshire, England
[4] Univ York, Dept Elect, York, N Yorkshire, England
基金
英国惠康基金;
关键词
D O I
10.7551/978-0-262-32621-6-ch100
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In attempts to further understand complex systems at an individual level, the application of agent-based modeling is becoming prevalent across a range of academic disciplines. With the advantages of being multi-platform, requiring little programming experience, and supported by a large number of freely available case study examples, Netlogo has become a popular choice as the software tool to apply in the construction of agent-based models. To utilize the constructed model as an informative or predictive tool, statistical analyses can be performed to reveal the influence that a parameter has on simulation behavior, offering an insight into the system under study. Here we demonstrate the integration of Netlogo's parameter sweep function, Behavior Space, with an extended version of SPARTAN, our previously published open source statistical package for performing local and global sensitivity analyses. With the addition of SPARTAN, the researcher can automatically create Netlogo experiment files for both local (individual parameter) and global (latin-hypercube and Fourier frequency) analyses, run these experiments in Netlogo, and receive detailed statistical information on the influence a parameter has on simulation response: vital information for translating a simulation result to a hypothesis grounded in the system being studied. To ensure our example work is reproducible, we demonstrate use of SPARTAN using the Virus transmission and perpetuation model available in the Netlogo model library.
引用
收藏
页码:622 / 628
页数:7
相关论文
共 50 条
  • [1] Applying spartan to Understand Parameter Uncertainty in Simulations
    Alden, Kieran
    Read, Mark
    Andrews, Paul S.
    Timmis, Jon
    Coles, Mark
    R JOURNAL, 2014, 6 (02): : 63 - 80
  • [2] Using NetLogo as a multiagent environment for simulations of polyelectrolyte models
    Rousse, Roberto
    Villegas, Juan Carlos
    Larez, Cristobal
    CIENCIA E INGENIERIA, 2011, : 127 - 133
  • [3] Parameter sensitivity in simulations of snowmelt
    Essery, R
    Etchevers, P
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D20) : D201111 - 15
  • [4] Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China
    Li, Mei
    Di, Zhenhua
    Duan, Qingyun
    JOURNAL OF HYDROLOGY, 2021, 603
  • [5] Parameter sensitivity analysis of Monte Carlo simulations of copper electrodeposition with multiple additives
    Drews, TO
    Braatz, RD
    Alkire, RC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) : C807 - C812
  • [6] Sensitivity of simulations depending on material parameter variations
    Stoffel, M
    MECHANICS RESEARCH COMMUNICATIONS, 2005, 32 (03) : 332 - 336
  • [7] Sensitivity analysis of biomolecular simulations using symbolic models
    Alam, Sadaf R.
    Bhatia, Nikhil
    Vetter, Jeffrey S.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 294 - 300
  • [8] Parameter sensitivity analysis of pedestrian head dynamic response and injuries based on coupling simulations
    Liu, Wenjun
    Duan, Aowen
    Li, Kui
    Qiu, Jinlong
    Fu, Liangfei
    Jia, Hongchun
    Yin, Zhiyong
    SCIENCE PROGRESS, 2020, 103 (01)
  • [9] Sensitivity of the magnetorotational instability to the shear parameter in stratified simulations
    Nauman, Farrukh
    Blackman, Eric G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (02) : 2102 - 2109
  • [10] Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression
    Sobie, Eric A.
    BIOPHYSICAL JOURNAL, 2009, 96 (04) : 1264 - 1274