Fast and robust localization of brain electrical sources using evolution strategies: Monte-carlo simulation and phantom experiment studies

被引:6
|
作者
Im, CH [1 ]
Jung, HK
Han, JY
Lee, HR
Lee, SY
机构
[1] Seoul Natl Univ, Sch Elect Engn, Seoul 151, South Korea
[2] Kyung Hee Univ, Grad Sch East West Med Sci, Seoul, South Korea
关键词
D O I
10.3233/JAE-2004-665
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper mu + square evolution strategy (ES) was applied to brain electrical source localization problems using electroencephalography (EEG). The results by the ES were compared to those by simulated annealing (SA) and genetic algorithm (GA). which have been typically used for the brain source localizations. Monte-Carlo simulation and phantom experiment study demonstrated that the use of ES could enhance both accuracy and computational efficiency.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 38 条
  • [1] FAST MONTE-CARLO SIMULATION USING A SUPERCOMPUTER
    HIDAKA, T
    HASEGAWA, S
    IDA, Y
    NEC RESEARCH & DEVELOPMENT, 1987, (85): : 23 - 28
  • [2] Robust Monte-Carlo localization using adaptive likelihood models
    Pfaff, Patrick
    Burgard, Wolfram
    Fox, Dieter
    EUROPEAN ROBOTICS SYMPOSIUM 2006, 2006, 22 : 181 - +
  • [3] PARALLELIZATION STRATEGIES FOR MOLECULAR SIMULATION USING THE MONTE-CARLO ALGORITHM
    JONES, DM
    GOODFELLOW, JM
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (02) : 127 - 137
  • [4] OPTIMIZED MONTE-CARLO SIMULATION FOR DIFFRACTION EXPERIMENTS USING PULSED NEUTRON SOURCES
    MILDNER, DFR
    CARPENTER, JM
    ACTA CRYSTALLOGRAPHICA SECTION A, 1977, 33 (NOV): : 962 - 967
  • [5] Fast Monte-Carlo Localization on Aerial Vehicles using Approximate Continuous Belief Representations
    Dhawale, Aditya
    Shankar, Kumar Shaurya
    Michael, Nathan
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5851 - 5859
  • [6] MLE RECONSTRUCTION OF A BRAIN PHANTOM USING A MONTE-CARLO TRANSITION MATRIX AND A STATISTICAL STOPPING RULE
    VEKLEROV, E
    LLACER, J
    HOFFMAN, EJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1988, 35 (01) : 603 - 607
  • [7] ROBUST DATA-DRIVEN OPTIMIZATION USING MACHINE LEARNING AND MONTE-CARLO SIMULATION
    Bechard, Vincent
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3575 - 3586
  • [8] Analysis of the simultaneity factor of fast-charging sites using Monte-Carlo simulation
    Silber, Finn
    Scheubner, Stefan
    Maertz, Alexandra
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155
  • [9] VALIDATION OF MONTE CARLO SIMULATION OF A THYROID UPTAKE SYSTEM USING VARIOUS SOURCES AND A SLAB PHANTOM
    Scarboro, Sarah
    Hertel, Nolan
    Burgett, Eric
    Howell, Rebecca
    Ansari, Armin
    NUCLEAR TECHNOLOGY, 2009, 168 (01) : 169 - 172
  • [10] ANALYSIS OF FAST-NEUTRON FLUX DISTRIBUTIONS IN BULK COAL BY MONTE-CARLO SIMULATION STUDIES
    OLIVEIRA, C
    SALGADO, J
    NUCLEAR GEOPHYSICS, 1991, 5 (03): : 315 - 328