Characteristic conditions of the generation of C0 semigroups in a Hilbert space

被引:33
|
作者
Shi, DH [1 ]
Feng, DX
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
关键词
C-0; semigroups; generation conditions; Hilbert space; non-dissipative systems;
D O I
10.1006/jmaa.2000.6810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper new characteristic conditions, in terms of A and the first order resolvent of A and A*, which assure that A generates a C-0 semigroup in a Hilbert space are proposed and proved. The conditions can be used to investigate the well-posedness problem of non-dissipative systems. An example is also given to show how to use them. (C) 2000 Academic Press.
引用
收藏
页码:356 / 376
页数:21
相关论文
共 50 条
  • [41] C0 -semigroups associated with uniquely ergodic Kantorovich modifications of operators
    Heilmann, Margareta
    Rasa, Ioan
    POSITIVITY, 2018, 22 (03) : 829 - 835
  • [42] THE SPECTRUM OF THE CESARO OPERATOR ON C0(C0)
    OKUTOYI, J
    THORPE, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 123 - 129
  • [43] CAUCHYS PROBLEM ON A CHARACTERISTIC CONOID C0 FOR QUASILINEAR EQUATIONS
    CAGNAC, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (12): : 777 - 780
  • [44] Orthogonality preserving pairs of operators on Hilbert C0(Z)-modules
    Asadi, Mohammad B.
    Olyaninezhad, Fatemeh
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3151 - 3158
  • [45] APPROXIMATELY ORTHOGONALITY PRESERVING MAPPINGS ON HILBERT C0(Z)-MODULES
    Asadi, Mohammad B.
    Yakhdani, Zahra Hassanpour
    Olyaninezhad, Fatemeh
    Sahleh, Abbas
    GLASNIK MATEMATICKI, 2022, 57 (01) : 63 - 71
  • [46] Description of a set of homomorphism from the Hilbert module C0(X, M) to its dual module C0(X, M)'
    Pavlov, A.A.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2002, (03):
  • [47] On copies of c0 in the bounded linear operator space
    J. C. Ferrando
    J. M. Amigó
    Czechoslovak Mathematical Journal, 2000, 50 : 651 - 656
  • [48] l∞-sums and the Banach space l∞/c0
    Brech, Christina
    Koszmider, Piotr
    FUNDAMENTA MATHEMATICAE, 2014, 224 (02) : 175 - 185
  • [49] The Banach space c0 is determined by its metric
    Godefroy, G
    Kalton, NJ
    Lancien, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09): : 817 - 822
  • [50] THE MAXIMAL IDEAL IN THE SPACE OF OPERATORS ON (Σlq)c0
    Cadavid, Diego Calle
    Monika
    Zhen, Bentuo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 340 - 348