Categorical Saito theory, II: Landau-Ginzburg orbifolds

被引:3
|
作者
Tu, Junwu [1 ]
机构
[1] ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China
关键词
Variation of Hodge structures; Noncommutative Hodge structures; Matrix factorizations; PERIODS; FORMULA;
D O I
10.1016/j.aim.2021.107744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W is an element of C[x(1), . . ., x(N)] be an invertible polynomial with an isolated singularity at origin, and let G subset of SLN boolean AND(C*)(N) be a finite diagonal and special linear symmetry group of W. In this paper, we use the category MFG(W) of G-equivariant matrix factorizations and its associated VSHS to construct a G-equivariant version of Saito's theory of primitive forms. We prove there exists a canonical categorical primitive form of MFG(W) characterized by G(W)(max)-equivariance. Conjecturally, this G-equivariant Saito theory is equivalent to the genus zero part of the FJRW theory under LG/LG mirror symmetry. In the marginal deformation direction, we verify this for the FJRW theory of (1/5(x(1)(5) + . . . + x(5)(5)), Z/5Z) with its mirror dual B-model Landau-Ginzburg orbifold (1/5( x(1)(5) + . . . + x(5)(5)), ( Z/5Z)(4)). In the case of the Quintic family W= 1/5( x(1)(5)+ . . . + x(5)(5)) - psi x(1)x(2)x(3)x(4)x(5), we also prove a comparison result of B-model VSHS's conjectured by Ganatra-Perutz-Sheridan[14]. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] ON THE MAGNETIC INHOMOGENEITY BASED ON LANDAU-GINZBURG THEORY
    KHAN, WI
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (16): : 2969 - 2978
  • [32] Landau-Ginzburg theory for "star'-shaped droplets
    Malevanets, Anatoly
    Oh, Myong In
    Sharawy, Mahmoud
    Consta, Styliani
    MOLECULAR PHYSICS, 2018, 116 (21-22) : 2892 - 2900
  • [33] THEORY AND APPLICATIONS OF THE LANDAU-GINZBURG THEORY OF AMORPHOUS FERROMAGNETISM
    WAGNER, D
    WOHLFARTH, EP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1980, 15-8 (JAN-) : 1345 - 1346
  • [34] DYNAMICAL BIFURCATIONS AND COMPETING INSTABILITIES IN LANDAU AND LANDAU-GINZBURG THEORY
    GAETA, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (09) : 1905 - 1915
  • [35] LANDAU-GINZBURG TYPE THEORY OF QUARK CONFINEMENT
    PATKOS, A
    NUCLEAR PHYSICS B, 1975, 97 (02) : 352 - 364
  • [36] Non-compact Gepner models, Landau-Ginzburg orbifolds and mirror symmetry
    Ashok, Sujay K.
    Benichou, Raphael
    Troost, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (01):
  • [37] NORMAL SUPERCONDUCTING TRANSITIONS IN LANDAU-GINZBURG THEORY
    CHAPMAN, SJ
    HOWISON, SD
    MCLEOD, JB
    OCKENDON, JR
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 119 : 117 - 124
  • [38] On the Landau-Ginzburg/conformal field theory correspondence
    Camacho, Ana Ros
    VERTEX OPERATOR ALGEBRAS, NUMBER THEORY AND RELATED TOPICS, 2020, 753 : 61 - 72
  • [39] Towards a Landau-Ginzburg theory for granular fluids
    Ernst, MH
    Wakou, J
    Brito, R
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 279 - 292
  • [40] Landau-Ginzburg skeletons
    Ian C. Davenport
    Ilarion V. Melnikov
    Journal of High Energy Physics, 2017