Uniform bounds for higher-order semilinear problems in conformal dimension

被引:2
|
作者
Mancini, Gabriele [1 ]
Romani, Giulio [2 ]
机构
[1] Univ Sapienza Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
[2] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Saale, Germany
基金
瑞士国家科学基金会;
关键词
Higher-order elliptic problems; A-priori estimates; Positive solutions; Blow-up; A-PRIORI BOUNDS; MEAN-FIELD EQUATION; POSITIVE SOLUTIONS; GREEN-FUNCTION; MAXIMUM PRINCIPLE; ELLIPTIC PROBLEMS; EXISTENCE; SYMMETRY; BEHAVIOR; SYSTEMS;
D O I
10.1016/j.na.2019.111717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish uniform a-priori estimates for solutions of the semilinear Dirichlet problem {(-Delta)(m)u = h(x, u) in Omega, u = partial derivative(n)u = ... = partial derivative(m-1)(n)u = 0 on partial derivative Omega, where h is a positive superlinear and subcritical nonlinearity in the sense of the Trudinger-Moser-Adams inequality, either when Omega is a ball or, provided an energy control on solutions is prescribed, when Omega is a smooth bounded domain. Our results are sharp within the class of distributional solutions. The analogous problem with Navier boundary conditions is also studied. Finally, as a consequence of our results, existence of a positive solution is shown by degree theory. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] INFLATION AND THE CONFORMAL STRUCTURE OF HIGHER-ORDER GRAVITY THEORIES
    BARROW, JD
    COTSAKIS, S
    PHYSICS LETTERS B, 1988, 214 (04) : 515 - 521
  • [22] SYMMETRY PROPERTIES IN HIGHER-ORDER SEMILINEAR ELLIPTIC-EQUATIONS
    DALMASSO, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (01) : 1 - 7
  • [23] HIGHER-ORDER ABSTRACT CAUCHY PROBLEMS
    SANDEFUR, JT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (03) : 728 - 742
  • [24] Second critical exponent for a higher-order semilinear parabolic system
    ChunXiao Yang
    JinGe Yang
    SiNing Zheng
    Science China Mathematics, 2015, 58 : 1453 - 1460
  • [25] On higher-order semilinear parabolic equations with measures as initial data
    Galaktionov, VA
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (02) : 193 - 205
  • [26] AMBIGUITIES AND PROBLEMS IN HIGHER-ORDER CORRECTIONS
    MEBARKI, N
    ABBES, O
    BENRACHI, F
    ACTA PHYSICA POLONICA B, 1990, 21 (12): : 947 - 968
  • [27] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [28] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [29] MAXIMUM PRINCIPLES FOR SOME HIGHER-ORDER SEMILINEAR ELLIPTIC EQUATIONS
    Mareno, A.
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 313 - 320
  • [30] Systems of semilinear higher-order evolution inequalities on the Heisenberg group
    El Hamidi, A
    Obeid, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (01) : 77 - 90