ASYMPTOTIC ENUMERATION OF k-EDGE-COLORED k-REGULAR GRAPHS

被引:3
|
作者
McLeod, Jeanette C. [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
matchings; graph coloring; asymptotic enumeration; MATCHINGS;
D O I
10.1137/080725556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(k, n) be the collection of all sets of k disjoint perfect matchings in a complete graph with 2n vertices. We prove that if k = p(n(5/6)), then vertical bar P(k, n)vertical bar similar to 1/k! ((2n)/2(n)n!)k ((2n)/(2n)(k)(2n - k)!)n . (1 - k/2n)(n/2)e(k/4) for n -> infinity. This improves upon an existing result of Bollobas [Combinatorics, London Math. Soc. Lecture Note Ser. 52, Cambridge University Press, Cambridge, New York, 1981, pp. 80-102] who solved this problem for constant k, and a more recent result of Lieby et al. [Combin. Probab. Comput., 18 (2009), pp. 533-549] where an estimate is obtained for k = o(n(1/3)).
引用
收藏
页码:2178 / 2197
页数:20
相关论文
共 50 条
  • [41] K-REGULAR EMBEDDINGS OF PLANE
    COHEN, FR
    HANDEL, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (01) : 201 - 204
  • [42] An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs
    Sarkoezy, Gabor N.
    Selkow, Stanley M.
    Song, Fei
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 127 - 145
  • [43] Vertex partitions of non-complete graphs into connected monochromatic k-regular graphs
    Sarkoezy, Gabor N.
    Selkow, Stanley M.
    Song, Fei
    DISCRETE MATHEMATICS, 2011, 311 (18-19) : 2079 - 2084
  • [44] k-regular antichains on [m] with k <= m - 2
    Boehm, Matthias
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 41 - 52
  • [45] 2-CONNECTED K-REGULAR GRAPHS ON AT MOST 3k+3 VERTICES TO BE HAMILTONIAN
    朱永津
    刘振宏
    俞正光
    Science Bulletin, 1985, (09) : 1269 - 1269
  • [46] Maximum k-regular induced subgraphs
    Cardoso, Domingos M.
    Kaminski, Marcin
    Lozin, Vadim
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (04) : 455 - 463
  • [47] On the Hamiltonicity of the k-Regular Graph Game
    Meza, Jeremy
    Simon, Samuel
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1131 - 1145
  • [48] THE MINIMAL GROWTH OF A k-REGULAR SEQUENCE
    Bell, Jason P.
    Coons, Michael
    Hare, Kevin G.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) : 195 - 203
  • [49] The First k-Regular Subgraph is Large
    Gao, Pu
    COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03): : 412 - 433
  • [50] On the Hamiltonicity of the k-Regular Graph Game
    Jeremy Meza
    Samuel Simon
    Graphs and Combinatorics, 2018, 34 : 1131 - 1145