ASYMPTOTIC ENUMERATION OF k-EDGE-COLORED k-REGULAR GRAPHS

被引:3
|
作者
McLeod, Jeanette C. [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
matchings; graph coloring; asymptotic enumeration; MATCHINGS;
D O I
10.1137/080725556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(k, n) be the collection of all sets of k disjoint perfect matchings in a complete graph with 2n vertices. We prove that if k = p(n(5/6)), then vertical bar P(k, n)vertical bar similar to 1/k! ((2n)/2(n)n!)k ((2n)/(2n)(k)(2n - k)!)n . (1 - k/2n)(n/2)e(k/4) for n -> infinity. This improves upon an existing result of Bollobas [Combinatorics, London Math. Soc. Lecture Note Ser. 52, Cambridge University Press, Cambridge, New York, 1981, pp. 80-102] who solved this problem for constant k, and a more recent result of Lieby et al. [Combin. Probab. Comput., 18 (2009), pp. 533-549] where an estimate is obtained for k = o(n(1/3)).
引用
收藏
页码:2178 / 2197
页数:20
相关论文
共 50 条
  • [1] Clustering on k-edge-colored graphs
    Angel, E.
    Bampis, E.
    Kononov, A.
    Paparas, D.
    Pountourakis, E.
    Zissimopoulos, V.
    DISCRETE APPLIED MATHEMATICS, 2016, 211 : 15 - 22
  • [2] On k-regular edge connectivity of chemical graphs
    Ediz, Suleyman
    Ciftci, Idris
    MAIN GROUP METAL CHEMISTRY, 2022, 45 (01) : 106 - 110
  • [3] Subgraphs of Random k-Edge-Coloured k-Regular Graphs
    Lieby, Paulette
    McKay, Brendan D.
    McLeod, Jeanette C.
    Wanless, Ian M.
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (04): : 533 - 549
  • [4] EMBEDDING K-REGULAR GRAPHS IN K+1-REGULAR GRAPHS
    GARDINER, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (DEC): : 393 - 400
  • [5] Spin systems on k-regular graphs with complex edge functions
    Cai, Jin-Yi
    Kowalczyk, Michael
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 2 - 16
  • [6] Independence and irredundance in k-regular graphs
    Fricke, GH
    Hedetniemi, ST
    Jacobs, DP
    ARS COMBINATORIA, 1998, 49 : 271 - 279
  • [7] K-regular graphs and Hecke surfaces
    Brooks, R
    Monastyrsky, M
    Geometry, Spectral Theory, Groups, and Dynamics, 2005, 387 : 65 - 74
  • [8] THE SPECTRAL GEOMETRY OF K-REGULAR GRAPHS
    BROOKS, R
    JOURNAL D ANALYSE MATHEMATIQUE, 1991, 57 : 120 - 151
  • [9] k-regular factors and semi-k-regular factors in graphs
    Kotani, K
    DISCRETE MATHEMATICS, 1998, 186 (1-3) : 177 - 193
  • [10] ON THE K-DIAMETER OF K-REGULAR K-CONNECTED GRAPHS
    HSU, DF
    LUCZAK, T
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 291 - 296