Resonant Neumann problems with indefinite and unbounded potential

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Inst Math, Bucharest 014700, Romania
关键词
Indefinite and unbounded potential; Reduction method; Resonance; Unique continuation property; Regularity; Critical groups; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.aml.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we report on some recent results obtained in our joint paper Papageorgiou and Radulescu (in press). We establish multiplicity properties for a class of semilinear Neumann problems driven by the Laplacian plus on unbounded and indefinite potential. The reaction is a Caratheodory function which exhibits linear growth near +/-infinity. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue. The approach combines critical point theory, Morse theory and the Lyapunov Schmidt method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
  • [1] MULTIPLICITY OF SOLUTIONS FOR RESONANT NEUMANN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8723 - 8756
  • [2] RESONANT ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (01) : 51 - 74
  • [3] Resonant Robin problems with indefinite and unbounded potential
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 848 - 878
  • [4] MULTIPLICITY OF SOLUTIONS FOR NEUMANN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1985 - 1999
  • [5] Positive solutions for Neumann problems with indefinite and unbounded potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 35 : 7 - 11
  • [6] On a class of parametric Neumann problems with indefinite and unbounded potential
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    [J]. FORUM MATHEMATICUM, 2015, 27 (03) : 1743 - 1772
  • [7] NEUMANN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL AND CONCAVE TERMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) : 4803 - 4816
  • [8] Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 293 - +
  • [9] ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL, RESONANT AT -∞, SUPERLINEAR AT plus ∞
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (02) : 261 - 286
  • [10] SEMILINEAR NEUMANN EQUATIONS WITH INDEFINITE AND UNBOUNDED POTENTIAL
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (01): : 307 - 340