MULTIPLICITY OF SOLUTIONS FOR RESONANT NEUMANN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
关键词
Indefinite and unbounded potential; reduction method; resonance; unique continuation property; regularity; critical groups; SEMILINEAR ELLIPTIC-EQUATIONS; ORDERED HILBERT-SPACES; NONTRIVIAL SOLUTIONS; EXISTENCE; POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine semilinear Neumann problems driven by the Laplacian plus an unbounded and indefinite potential. The reaction is a Caratheodory function which exhibits linear growth near +/-infinity. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue, and we prove several multiplicity results. Our approach uses critical point theory, Morse theory and the reduction method (the Lyapunov-Schmidt method).
引用
收藏
页码:8723 / 8756
页数:34
相关论文
共 50 条