A Generalized (G′/G)-Expansion Method for the Nonlinear Schrodinger Equation with Variable Coefficients

被引:30
|
作者
Zhang, Sheng [1 ]
Ba, Jin-Mei [1 ]
Sun, Ying-Na [1 ]
Dong, Ling [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
关键词
Nonlinear Evolution Equations; Generalized (G '/G)-Expansion Method; Hyperbolic Function Solutions; Trigonometric Function Solutions; Rational Solutions; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; KADOMSTEV-PETVIASHVILI EQUATION; PARTIAL-DIFFERENTIAL-EQUATIONS; SOLITON-SOLUTIONS; SYMBOLIC COMPUTATION; EVOLUTION-EQUATIONS; EXPANSION METHOD; BROER-KAUP; MKDV EQUATION;
D O I
10.1515/zna-2009-1104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a generalized (G'/G)-expansion method, combined with suitable transformations, is used to construct exact solutions of the nonlinear Schrodinger equation with variable coefficients. As a result, hyperbolic function solutions, trigonometeric function solutions, and rational solutions with parameters are obtained. When the parameters are taken as special values, some solutions including the known kink-type solitary wave solution and the singular travelling wave solution are derived from these obtained solutions. It is shown that the generalized (G'/G)-expansion method is direct, effective, and can be used for many other nonlinear evolution equations with variable coefficients in mathematical physics.
引用
收藏
页码:691 / 696
页数:6
相关论文
共 50 条
  • [31] Generalized (G'/G) - Expansion Method and Its Applications to the Loaded Burgers Equation
    Urazboev, G. U.
    Khasanov, M. M.
    Rakhimov, I. D.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2023, 13 (02): : 248 - 257
  • [32] Generalized and Improved (G′/G)-Expansion Method Combined with Jacobi Elliptic Equation
    Akbar, M. Ali
    Mohd, Norhashidah H. J. Ali
    Zayed, E. M. E.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (06) : 669 - 676
  • [33] Generalized and Improved(G′/G)-Expansion Method Combined with Jacobi Elliptic Equation
    M.Ali Akbar
    Norhashidah Hj.Mohd.Ali
    E.M.E.Zayed
    CommunicationsinTheoreticalPhysics, 2014, 61 (06) : 669 - 676
  • [34] The Generalized (G'/G)-Expansion Method for the Loaded Korteweg–de Vries Equation
    Urazboev G.U.
    Baltaeva I.I.
    Rakhimov I.D.
    Journal of Applied and Industrial Mathematics, 2021, 15 (04) : 679 - 685
  • [35] New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients
    Dai, CQ
    Zhang, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04): : 723 - 737
  • [36] Exact solutions to nonlinear Schrodinger equation with variable coefficients
    Liu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5866 - 5869
  • [37] An Integral Form of the Nonlinear Schrodinger Equation with Variable Coefficients
    Suazo, Erwin
    Suslov, Sergei K.
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 1214 - 1220
  • [38] The extended (G′/G)-expansion method and travelling wave solutions for the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity
    Zhang, Zaiyun
    Huang, Jianhua
    Zhong, Juan
    Dou, Sha-Sha
    Liu, Jiao
    Peng, Dan
    Gao, Ting
    PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (06): : 1011 - 1029
  • [39] The new approach of the generalized (G '/G)expansion method for nonlinear evolution equations
    Alam, Md Nur
    Akbar, M. Ali
    AIN SHAMS ENGINEERING JOURNAL, 2014, 5 (02) : 595 - 603
  • [40] A generalized (G′/G)-expansion method and its applications to nonlinear evolution equations
    Lue, Hai-Ling
    Liu, Xi-Qiang
    Niu, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) : 3811 - 3816